IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46507-1.html
   My bibliography  Save this article

Universal control of a bosonic mode via drive-activated native cubic interactions

Author

Listed:
  • Axel M. Eriksson

    (Chalmers University of Technology)

  • Théo Sépulcre

    (Chalmers University of Technology)

  • Mikael Kervinen

    (Chalmers University of Technology)

  • Timo Hillmann

    (Chalmers University of Technology)

  • Marina Kudra

    (Chalmers University of Technology)

  • Simon Dupouy

    (Chalmers University of Technology)

  • Yong Lu

    (Chalmers University of Technology
    University of Stuttgart)

  • Maryam Khanahmadi

    (Chalmers University of Technology)

  • Jiaying Yang

    (Chalmers University of Technology)

  • Claudia Castillo-Moreno

    (Chalmers University of Technology)

  • Per Delsing

    (Chalmers University of Technology)

  • Simone Gasparinetti

    (Chalmers University of Technology)

Abstract

Linear bosonic modes offer a hardware-efficient alternative for quantum information processing but require access to some nonlinearity for universal control. The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing, which relies on linear operations but requires access to resourceful (’nonlinear’) quantum states, such as cubic phase states. In contrast, superconducting microwave circuits offer engineerable nonlinearities but suffer from static Kerr nonlinearity. Here, we demonstrate universal control of a bosonic mode composed of a superconducting nonlinear asymmetric inductive element (SNAIL) resonator, enabled by native nonlinearities in the SNAIL element. We suppress static nonlinearities by operating the SNAIL in the vicinity of its Kerr-free point and dynamically activate nonlinearities up to third order by fast flux pulses. We experimentally realize a universal set of generalized squeezing operations, as well as the cubic phase gate, and exploit them to deterministically prepare a cubic phase state in 60 ns. Our results initiate the experimental field of polynomial quantum computing, in the continuous-variables notion originally introduced by Lloyd and Braunstein.

Suggested Citation

  • Axel M. Eriksson & Théo Sépulcre & Mikael Kervinen & Timo Hillmann & Marina Kudra & Simon Dupouy & Yong Lu & Maryam Khanahmadi & Jiaying Yang & Claudia Castillo-Moreno & Per Delsing & Simone Gasparine, 2024. "Universal control of a bosonic mode via drive-activated native cubic interactions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46507-1
    DOI: 10.1038/s41467-024-46507-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46507-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46507-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. V. Sivak & A. Eickbusch & B. Royer & S. Singh & I. Tsioutsios & S. Ganjam & A. Miano & B. L. Brock & A. Z. Ding & L. Frunzio & S. M. Girvin & R. J. Schoelkopf & M. H. Devoret, 2023. "Real-time quantum error correction beyond break-even," Nature, Nature, vol. 616(7955), pages 50-55, April.
    2. Sara Bartolucci & Patrick Birchall & Hector Bombín & Hugo Cable & Chris Dawson & Mercedes Gimeno-Segovia & Eric Johnston & Konrad Kieling & Naomi Nickerson & Mihir Pant & Fernando Pastawski & Terry Ru, 2023. "Fusion-based quantum computation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Max Hofheinz & H. Wang & M. Ansmann & Radoslaw C. Bialczak & Erik Lucero & M. Neeley & A. D. O'Connell & D. Sank & J. Wenner & John M. Martinis & A. N. Cleland, 2009. "Synthesizing arbitrary quantum states in a superconducting resonator," Nature, Nature, vol. 459(7246), pages 546-549, May.
    4. Sebastian Krinner & Nathan Lacroix & Ants Remm & Agustin Paolo & Elie Genois & Catherine Leroux & Christoph Hellings & Stefania Lazar & Francois Swiadek & Johannes Herrmann & Graham J. Norris & Christ, 2022. "Realizing repeated quantum error correction in a distance-three surface code," Nature, Nature, vol. 605(7911), pages 669-674, May.
    5. Max Hofheinz & E. M. Weig & M. Ansmann & Radoslaw C. Bialczak & Erik Lucero & M. Neeley & A. D. O’Connell & H. Wang & John M. Martinis & A. N. Cleland, 2008. "Generation of Fock states in a superconducting quantum circuit," Nature, Nature, vol. 454(7202), pages 310-314, July.
    6. Nissim Ofek & Andrei Petrenko & Reinier Heeres & Philip Reinhold & Zaki Leghtas & Brian Vlastakis & Yehan Liu & Luigi Frunzio & S. M. Girvin & L. Jiang & Mazyar Mirrahimi & M. H. Devoret & R. J. Schoe, 2016. "Extending the lifetime of a quantum bit with error correction in superconducting circuits," Nature, Nature, vol. 536(7617), pages 441-445, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ziqian Li & Tanay Roy & David Rodríguez Pérez & Kan-Heng Lee & Eliot Kapit & David I. Schuster, 2024. "Autonomous error correction of a single logical qubit using two transmons," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    3. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yao Lu & Aniket Maiti & John W. O. Garmon & Suhas Ganjam & Yaxing Zhang & Jahan Claes & Luigi Frunzio & Steven M. Girvin & Robert J. Schoelkopf, 2023. "High-fidelity parametric beamsplitting with a parity-protected converter," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Terry Rudolph & Shashank Soyuz Virmani, 2023. "The two-qubit singlet/triplet measurement is universal for quantum computing given only maximally-mixed initial states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. W. Wang & Z.-J. Chen & X. Liu & W. Cai & Y. Ma & X. Mu & X. Pan & Z. Hua & L. Hu & Y. Xu & H. Wang & Y. P. Song & X.-B. Zou & C.-L. Zou & L. Sun, 2022. "Quantum-enhanced radiometry via approximate quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Kevin Reuer & Jonas Landgraf & Thomas Fösel & James O’Sullivan & Liberto Beltrán & Abdulkadir Akin & Graham J. Norris & Ants Remm & Michael Kerschbaum & Jean-Claude Besse & Florian Marquardt & Andreas, 2023. "Realizing a deep reinforcement learning agent for real-time quantum feedback," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Neereja Sundaresan & Theodore J. Yoder & Youngseok Kim & Muyuan Li & Edward H. Chen & Grace Harper & Ted Thorbeck & Andrew W. Cross & Antonio D. Córcoles & Maika Takita, 2023. "Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Noah Goss & Alexis Morvan & Brian Marinelli & Bradley K. Mitchell & Long B. Nguyen & Ravi K. Naik & Larry Chen & Christian Jünger & John Mark Kreikebaum & David I. Santiago & Joel J. Wallman & Irfan S, 2022. "High-fidelity qutrit entangling gates for superconducting circuits," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. William P. Livingston & Machiel S. Blok & Emmanuel Flurin & Justin Dressel & Andrew N. Jordan & Irfan Siddiqi, 2022. "Experimental demonstration of continuous quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Cristóbal Lledó & Rémy Dassonneville & Adrien Moulinas & Joachim Cohen & Ross Shillito & Audrey Bienfait & Benjamin Huard & Alexandre Blais, 2023. "Cloaking a qubit in a cavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    12. Xin Meng & Youwei Zhang & Xichang Zhang & Shenchao Jin & Tingran Wang & Liang Jiang & Liantuan Xiao & Suotang Jia & Yanhong Xiao, 2023. "Machine learning assisted vector atomic magnetometry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Sergei Slussarenko & Morgan M. Weston & Lynden K. Shalm & Varun B. Verma & Sae-Woo Nam & Sacha Kocsis & Timothy C. Ralph & Geoff J. Pryde, 2022. "Quantum channel correction outperforming direct transmission," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Paul V. Klimov & Andreas Bengtsson & Chris Quintana & Alexandre Bourassa & Sabrina Hong & Andrew Dunsworth & Kevin J. Satzinger & William P. Livingston & Volodymyr Sivak & Murphy Yuezhen Niu & Trond I, 2024. "Optimizing quantum gates towards the scale of logical qubits," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Dennis Willsch & Madita Willsch & Fengping Jin & Hans De Raedt & Kristel Michielsen, 2023. "Large-Scale Simulation of Shor’s Quantum Factoring Algorithm," Mathematics, MDPI, vol. 11(19), pages 1-38, October.
    16. Aleksander Kubica & Michael Vasmer, 2022. "Single-shot quantum error correction with the three-dimensional subsystem toric code," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46507-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.