IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61126-0.html
   My bibliography  Save this article

Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit

Author

Listed:
  • Mikko Tuokkola

    (Aalto University)

  • Yoshiki Sunada

    (Aalto University)

  • Heidi Kivijärvi

    (Aalto University)

  • Jonatan Albanese

    (Aalto University)

  • Leif Grönberg

    (VTT Technical Research Centre of Finland Ltd. & QTF Centre of Excellence)

  • Jukka-Pekka Kaikkonen

    (VTT Technical Research Centre of Finland Ltd. & QTF Centre of Excellence)

  • Visa Vesterinen

    (VTT Technical Research Centre of Finland Ltd. & QTF Centre of Excellence)

  • Joonas Govenius

    (VTT Technical Research Centre of Finland Ltd. & QTF Centre of Excellence)

  • Mikko Möttönen

    (Aalto University
    VTT Technical Research Centre of Finland Ltd. & QTF Centre of Excellence)

Abstract

Superconducting qubits are one of the most promising physical systems for implementing quantum computers. However, executing quantum algorithms of practical computational advantage requires further improvements in the fidelities of qubit operations, which are currently limited by the energy relaxation and dephasing times of the qubits. Here, we report our measurement results of a high-coherence transmon qubit with energy relaxation and echo dephasing times surpassing those in the existing literature. We measure a qubit frequency of 2.9 GHz, an energy relaxation time T1 with a median of 425 μs and a maximum of (666 ± 33)μs, and an echo dephasing time $${T}_{2}^{{{{\rm{echo}}}}}$$ T 2 echo with a median of 541 μs and a maximum of (1057 ± 138)μs. We report in detail our design, fabrication process, and measurement setup to facilitate the reproduction and wide adoption of high-coherence transmon qubits in the academia and industry.

Suggested Citation

  • Mikko Tuokkola & Yoshiki Sunada & Heidi Kivijärvi & Jonatan Albanese & Leif Grönberg & Jukka-Pekka Kaikkonen & Visa Vesterinen & Joonas Govenius & Mikko Möttönen, 2025. "Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit," Nature Communications, Nature, vol. 16(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61126-0
    DOI: 10.1038/s41467-025-61126-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61126-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61126-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. V. Sivak & A. Eickbusch & B. Royer & S. Singh & I. Tsioutsios & S. Ganjam & A. Miano & B. L. Brock & A. Z. Ding & L. Frunzio & S. M. Girvin & R. J. Schoelkopf & M. H. Devoret, 2023. "Real-time quantum error correction beyond break-even," Nature, Nature, vol. 616(7955), pages 50-55, April.
    2. J. Damme & S. Massar & R. Acharya & Ts. Ivanov & D. Perez Lozano & Y. Canvel & M. Demarets & D. Vangoidsenhoven & Y. Hermans & J. G. Lai & A. M. Vadiraj & M. Mongillo & D. Wan & J. Boeck & A. Potočnik, 2024. "Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers," Nature, Nature, vol. 634(8032), pages 74-79, October.
    3. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Ioan M. Pop & Kurtis Geerlings & Gianluigi Catelani & Robert J. Schoelkopf & Leonid I. Glazman & Michel H. Devoret, 2014. "Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles," Nature, Nature, vol. 508(7496), pages 369-372, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick M. Harrington & Mingyu Li & Max Hays & Wouter Pontseele & Daniel Mayer & H. Douglas Pinckney & Felipe Contipelli & Michael Gingras & Bethany M. Niedzielski & Hannah Stickler & Jonilyn L. Yoder, 2025. "Synchronous detection of cosmic rays and correlated errors in superconducting qubit arrays," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    2. Andy Z. Ding & Benjamin L. Brock & Alec Eickbusch & Akshay Koottandavida & Nicholas E. Frattini & Rodrigo G. Cortiñas & Vidul R. Joshi & Stijn J. Graaf & Benjamin J. Chapman & Suhas Ganjam & Luigi Fru, 2025. "Quantum control of an oscillator with a Kerr-cat qubit," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    3. Fernando Valadares & Ni-Ni Huang & Kyle Timothy Ng Chu & Aleksandr Dorogov & Weipin Chua & Lingda Kong & Pengtao Song & Yvonne Y. Gao, 2024. "On-demand transposition across light-matter interaction regimes in bosonic cQED," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Axel M. Eriksson & Théo Sépulcre & Mikael Kervinen & Timo Hillmann & Marina Kudra & Simon Dupouy & Yong Lu & Maryam Khanahmadi & Jiaying Yang & Claudia Castillo-Moreno & Per Delsing & Simone Gasparine, 2024. "Universal control of a bosonic mode via drive-activated native cubic interactions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Xingjian Zhang & Zhaokai Pan & Guoding Liu, 2024. "Unconditional quantum magic advantage in shallow circuit computation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Daisuke Hoshi & Toshiaki Nagase & Sangil Kwon & Daisuke Iyama & Takahiko Kamiya & Shiori Fujii & Hiroto Mukai & Shahnawaz Ahmed & Anton Frisk Kockum & Shohei Watabe & Fumiki Yoshihara & Jaw-Shen Tsai, 2025. "Entangling Schrödinger’s cat states by bridging discrete- and continuous-variable encoding," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Yao Lu & Aniket Maiti & John W. O. Garmon & Suhas Ganjam & Yaxing Zhang & Jahan Claes & Luigi Frunzio & Steven M. Girvin & Robert J. Schoelkopf, 2023. "High-fidelity parametric beamsplitting with a parity-protected converter," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Fabian Kaap & Christoph Kissling & Victor Gaydamachenko & Lukas Grünhaupt & Sergey Lotkhov, 2024. "Demonstration of dual Shapiro steps in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    10. Xin Meng & Youwei Zhang & Xichang Zhang & Shenchao Jin & Tingran Wang & Liang Jiang & Liantuan Xiao & Suotang Jia & Yanhong Xiao, 2023. "Machine learning assisted vector atomic magnetometry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Bingzhi Zhang & Junyu Liu & Xiao-Chuan Wu & Liang Jiang & Quntao Zhuang, 2024. "Dynamical transition in controllable quantum neural networks with large depth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. F. Hassani & M. Peruzzo & L. N. Kapoor & A. Trioni & M. Zemlicka & J. M. Fink, 2023. "Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Mohsin Iqbal & Anasuya Lyons & Chiu Fan Bowen Lo & Nathanan Tantivasadakarn & Joan Dreiling & Cameron Foltz & Thomas M. Gatterman & Dan Gresh & Nathan Hewitt & Craig A. Holliman & Jacob Johansen & Bri, 2025. "Qutrit toric code and parafermions in trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61126-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.