IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45942-4.html
   My bibliography  Save this article

The emergence of circadian timekeeping in the intestine

Author

Listed:
  • Kathyani Parasram

    (University of Windsor)

  • Amy Zuccato

    (University of Windsor)

  • Minjeong Shin

    (University of Alberta)

  • Reegan Willms

    (University of Alberta)

  • Brian DeVeale

    (University of Windsor)

  • Edan Foley

    (University of Alberta)

  • Phillip Karpowicz

    (University of Windsor)

Abstract

The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.

Suggested Citation

  • Kathyani Parasram & Amy Zuccato & Minjeong Shin & Reegan Willms & Brian DeVeale & Edan Foley & Phillip Karpowicz, 2024. "The emergence of circadian timekeeping in the intestine," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45942-4
    DOI: 10.1038/s41467-024-45942-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45942-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45942-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li He & Guangwei Si & Jiuhong Huang & Aravinthan D. T. Samuel & Norbert Perrimon, 2018. "Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel," Nature, Nature, vol. 555(7694), pages 103-106, March.
    2. Craig A. Micchelli & Norbert Perrimon, 2006. "Evidence that stem cells reside in the adult Drosophila midgut epithelium," Nature, Nature, vol. 439(7075), pages 475-479, January.
    3. Zongzhao Zhai & Shu Kondo & Nati Ha & Jean-Philippe Boquete & Michael Brunner & Ryu Ueda & Bruno Lemaitre, 2015. "Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis," Nature Communications, Nature, vol. 6(1), pages 1-13, December.
    4. Jerome Korzelius & Sina Azami & Tal Ronnen-Oron & Philipp Koch & Maik Baldauf & Elke Meier & Imilce A. Rodriguez-Fernandez & Marco Groth & Pedro Sousa-Victor & Heinrich Jasper, 2019. "The WT1-like transcription factor Klumpfuss maintains lineage commitment of enterocyte progenitors in the Drosophila intestine," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Steven M. Reppert & David R. Weaver, 2002. "Coordination of circadian timing in mammals," Nature, Nature, vol. 418(6901), pages 935-941, August.
    6. Benjamin Ohlstein & Allan Spradling, 2006. "The adult Drosophila posterior midgut is maintained by pluripotent stem cells," Nature, Nature, vol. 439(7075), pages 470-474, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingting Guo & Chenhui Wang & Yongchao Zhang & Ruxue Wei & Rongwen Xi, 2024. "Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Zoe Veneti & Virginia Fasoulaki & Nikolaos Kalavros & Ioannis S. Vlachos & Christos Delidakis & Aristides G. Eliopoulos, 2024. "Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Xingting Guo & Yongchao Zhang & Huanwei Huang & Rongwen Xi, 2022. "A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Christian F. Christensen & Quentin Laurichesse & Rihab Loudhaief & Julien Colombani & Ditte S. Andersen, 2024. "Drosophila activins adapt gut size to food intake and promote regenerative growth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Daniel Jun-Kit Hu & Jina Yun & Justin Elstrott & Heinrich Jasper, 2021. "Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Cheng-Kang Chiang & Neel Mehta & Abhilasha Patel & Peng Zhang & Zhibin Ning & Janice Mayne & Warren Y L Sun & Hai-Ying M Cheng & Daniel Figeys, 2014. "The Proteomic Landscape of the Suprachiasmatic Nucleus Clock Reveals Large-Scale Coordination of Key Biological Processes," PLOS Genetics, Public Library of Science, vol. 10(10), pages 1-15, October.
    8. Yue Li & Tianfeng Lu & Pengzhen Dong & Jian Chen & Qiang Zhao & Yuying Wang & Tianheng Xiao & Honggang Wu & Quanyi Zhao & Hai Huang, 2024. "A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Valerie L Harbour & Yuval Weigl & Barry Robinson & Shimon Amir, 2013. "Comprehensive Mapping of Regional Expression of the Clock Protein PERIOD2 in Rat Forebrain across the 24-h Day," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-14, October.
    10. O. Slaby & S. Sager & O. S. Shaik & U. Kummer & D. Lebiedz, 2007. "Optimal control of self-organized dynamics in cellular signal transduction," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 13(5), pages 487-502, October.
    11. Agnes Banreti & Shayon Bhattacharya & Frank Wien & Koichi Matsuo & Matthieu Réfrégiers & Cornelia Meinert & Uwe Meierhenrich & Bruno Hudry & Damien Thompson & Stéphane Noselli, 2022. "Biological effects of the loss of homochirality in a multicellular organism," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Michal Dudek & Dharshika R. J. Pathiranage & Beatriz Bano-Otalora & Anna Paszek & Natalie Rogers & Cátia F. Gonçalves & Craig Lawless & Dong Wang & Zhuojing Luo & Liu Yang & Farshid Guilak & Judith A., 2023. "Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jing Wang & Haibo Di & Steven Laureys & Nantu Hu, 2018. "Circadian Rhythm of Patients with Disorders of Consciousness," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 9(3), pages 60-61, November.
    14. Jiae Lee & Alejandra J. H. Cabrera & Cecilia M. T. Nguyen & Young V. Kwon, 2020. "Dissemination of RasV12-transformed cells requires the mechanosensitive channel Piezo," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    15. Hyeri Nam & Younghwan Lee & Boil Kim & Ji-Won Lee & Seohyeon Hwang & Hyun-Kyu An & Kyung Min Chung & Youngjin Park & Jihyun Hong & Kyungjin Kim & Eun-Kyoung Kim & Han Kyoung Choe & Seong-Woon Yu, 2022. "Presenilin 2 N141I mutation induces hyperactive immune response through the epigenetic repression of REV-ERBα," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Li, Ying & Liu, Zengrong, 2016. "Coupling mechanism in the gate and oscillator model of the SCN," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 62-72.
    17. Valerie L Harbour & Yuval Weigl & Barry Robinson & Shimon Amir, 2014. "Phase Differences in Expression of Circadian Clock Genes in the Central Nucleus of the Amygdala, Dentate Gyrus, and Suprachiasmatic Nucleus in the Rat," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    18. Nguyen, Ha Trong & Zubrick, Stephen R. & Mitrou, Francis, 2022. "The effects of sleep duration on child health and development," GLO Discussion Paper Series 1150, Global Labor Organization (GLO).
    19. Nolan Frey & Utku M. Sönmez & Jonathan Minden & Philip LeDuc, 2022. "Microfluidics for understanding model organisms," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Michael Savic & Rowan P. Ogeil & Megan J. Sechtig & Peta Lee-Tobin & Nyssa Ferguson & Dan I. Lubman, 2019. "How Do Nurses Cope with Shift Work? A Qualitative Analysis of Open-Ended Responses from a Survey of Nurses," IJERPH, MDPI, vol. 16(20), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45942-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.