IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60196-4.html
   My bibliography  Save this article

Restoring calcium crosstalk between ER and mitochondria promotes intestinal stem cell rejuvenation through autophagy in aged Drosophila

Author

Listed:
  • Yao Zhang

    (Tongji University)

  • Peng Ma

    (Tongji University)

  • Saifei Wang

    (Tongji University)

  • Shuxin Chen

    (Tongji University)

  • Hansong Deng

    (Tongji University)

Abstract

Breakdown of calcium network is closely associated with cellular aging. Previously, we found that cytosolic calcium (CytoCa2+) levels were elevated while mitochondrial calcium (MitoCa2+) levels were decreased and associated with metabolic shift in aged intestinal stem cells (ISCs) of Drosophila. How MitoCa2+ was decoupled from the intracellular calcium network and whether the reduction of MitoCa2+ drives ISC aging, however, remains unresolved. Here, we show that genetically restoring MitoCa2+ can reverse ISC functional decline and promote intestinal homeostasis by activating autophagy in aged flies. Further studies indicate that MitoCa2+ and Mitochondria–ER contacts (MERCs) form a positive feedback loop via IP3R to regulate autophagy independent of AMPK. Breakdown of this loop is responsible for MitoCa2+ reduction and ISC dysfunction in aged flies. Our results identify a regulatory module for autophagy initiation involving calcium crosstalk between the ER and mitochondria, providing a strategy to treat aging and age-related diseases.

Suggested Citation

  • Yao Zhang & Peng Ma & Saifei Wang & Shuxin Chen & Hansong Deng, 2025. "Restoring calcium crosstalk between ER and mitochondria promotes intestinal stem cell rejuvenation through autophagy in aged Drosophila," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60196-4
    DOI: 10.1038/s41467-025-60196-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60196-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60196-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60196-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.