IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34270-0.html
   My bibliography  Save this article

A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila

Author

Listed:
  • Xingting Guo

    (National Institute of Biological Sciences
    Tsinghua University)

  • Yongchao Zhang

    (National Institute of Biological Sciences
    Tsinghua University)

  • Huanwei Huang

    (National Institute of Biological Sciences
    Tsinghua University)

  • Rongwen Xi

    (National Institute of Biological Sciences
    Tsinghua University)

Abstract

Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an “additive hierarchical TF cascade”. Specifically, a combination of a master TF, a secondary-level TF and a tertiary-level TF constitute a “TF code” for generating EE diversity. We also discover a high degree of post-specification plasticity of EEs, as changes in the code—including as few as one distinct TF—allow efficient switching of subtype identities. Our study thus reveals a hierarchically-organized TF code that underlies EE diversity and plasticity in Drosophila, which can guide investigations of EEs in mammals and inform their application in medicine.

Suggested Citation

  • Xingting Guo & Yongchao Zhang & Huanwei Huang & Rongwen Xi, 2022. "A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34270-0
    DOI: 10.1038/s41467-022-34270-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34270-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34270-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guonan Lin & Na Xu & Rongwen Xi, 2008. "Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells," Nature, Nature, vol. 455(7216), pages 1119-1123, October.
    2. Craig A. Micchelli & Norbert Perrimon, 2006. "Evidence that stem cells reside in the adult Drosophila midgut epithelium," Nature, Nature, vol. 439(7075), pages 475-479, January.
    3. Benjamin Ohlstein & Allan Spradling, 2006. "The adult Drosophila posterior midgut is maintained by pluripotent stem cells," Nature, Nature, vol. 439(7075), pages 470-474, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingting Guo & Chenhui Wang & Yongchao Zhang & Ruxue Wei & Rongwen Xi, 2024. "Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingting Guo & Chenhui Wang & Yongchao Zhang & Ruxue Wei & Rongwen Xi, 2024. "Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Kathyani Parasram & Amy Zuccato & Minjeong Shin & Reegan Willms & Brian DeVeale & Edan Foley & Phillip Karpowicz, 2024. "The emergence of circadian timekeeping in the intestine," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Christian F. Christensen & Quentin Laurichesse & Rihab Loudhaief & Julien Colombani & Ditte S. Andersen, 2024. "Drosophila activins adapt gut size to food intake and promote regenerative growth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Daniel Jun-Kit Hu & Jina Yun & Justin Elstrott & Heinrich Jasper, 2021. "Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Zachary T. Spencer & Victoria H. Ng & Hassina Benchabane & Ghalia Saad Siddiqui & Deepesh Duwadi & Ben Maines & Jamal M. Bryant & Anna Schwarzkopf & Kai Yuan & Sara N. Kassel & Anant Mishra & Ashley P, 2023. "The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Zoe Veneti & Virginia Fasoulaki & Nikolaos Kalavros & Ioannis S. Vlachos & Christos Delidakis & Aristides G. Eliopoulos, 2024. "Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yue Li & Tianfeng Lu & Pengzhen Dong & Jian Chen & Qiang Zhao & Yuying Wang & Tianheng Xiao & Honggang Wu & Quanyi Zhao & Hai Huang, 2024. "A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Agnes Banreti & Shayon Bhattacharya & Frank Wien & Koichi Matsuo & Matthieu Réfrégiers & Cornelia Meinert & Uwe Meierhenrich & Bruno Hudry & Damien Thompson & Stéphane Noselli, 2022. "Biological effects of the loss of homochirality in a multicellular organism," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Enas E. Nasr & Zeinab Z. Khater & Martina Zelenakova & Zuzana Vranayova & Mohamed Abu-Hashim, 2020. "Soil Physicochemical Properties, Metal Deposition, and Ultrastructural Midgut Changes in Ground Beetles, Calosoma chlorostictum, under Agricultural Pollution," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    11. Ana-Beatriz F. Barletta & Jamie C. Smith & Emily Burkart & Simon Bondarenko & Igor V. Sharakhov & Frank Criscione & David O’Brochta & Carolina Barillas-Mury, 2024. "Mosquito midgut stem cell cellular defense response limits Plasmodium parasite infection," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34270-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.