IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45483-w.html
   My bibliography  Save this article

Generating active metal/oxide reverse interfaces through coordinated migration of single atoms

Author

Listed:
  • Lina Zhang

    (Xiamen University
    Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province)

  • Shaolong Wan

    (Xiamen University)

  • Congcong Du

    (Xiamen University)

  • Qiang Wan

    (Fuzhou University)

  • Hien Pham

    (University of New Mexico)

  • Jiafei Zhao

    (Xiamen University)

  • Xingyu Ding

    (Xiamen University)

  • Diye Wei

    (Xiamen University)

  • Wei Zhao

    (Shenzhen University)

  • Jiwei Li

    (Xiamen University)

  • Yanping Zheng

    (Xiamen University)

  • Hui Xie

    (Xiamen University)

  • Hua Zhang

    (Xiamen University)

  • Mingshu Chen

    (Xiamen University)

  • Kelvin H. L. Zhang

    (Xiamen University)

  • Shuai Wang

    (Xiamen University
    Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province)

  • Jingdong Lin

    (Xiamen University)

  • Jianyu Huang

    (Yanshan University)

  • Sen Lin

    (Fuzhou University)

  • Yong Wang

    (Washington State University)

  • Abhaya K. Datye

    (University of New Mexico)

  • Ye Wang

    (Xiamen University
    Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province)

  • Haifeng Xiong

    (Xiamen University
    Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province
    Fujian Shanhai Collaborative Innovation Center of Rare-earth Functional Materials)

Abstract

Identification of active sites in catalytic materials is important and helps establish approaches to the precise design of catalysts for achieving high reactivity. Generally, active sites of conventional heterogeneous catalysts can be single atom, nanoparticle or a metal/oxide interface. Herein, we report that metal/oxide reverse interfaces can also be active sites which are created from the coordinated migration of metal and oxide atoms. As an example, a Pd1/CeO2 single-atom catalyst prepared via atom trapping, which is otherwise inactive at 30 °C, is able to completely oxidize formaldehyde after steam treatment. The enhanced reactivity is due to the formation of a Ce2O3-Pd nanoparticle domain interface, which is generated by the migration of both Ce and Pd atoms on the atom-trapped Pd1/CeO2 catalyst during steam treatment. We show that the generation of metal oxide-metal interfaces can be achieved in other heterogeneous catalysts due to the coordinated mobility of metal and oxide atoms, demonstrating the formation of a new active interface when using metal single-atom material as catalyst precursor.

Suggested Citation

  • Lina Zhang & Shaolong Wan & Congcong Du & Qiang Wan & Hien Pham & Jiafei Zhao & Xingyu Ding & Diye Wei & Wei Zhao & Jiwei Li & Yanping Zheng & Hui Xie & Hua Zhang & Mingshu Chen & Kelvin H. L. Zhang &, 2024. "Generating active metal/oxide reverse interfaces through coordinated migration of single atoms," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45483-w
    DOI: 10.1038/s41467-024-45483-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45483-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45483-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. B. Jackson & E. I. Solomon & J. G. Canadell & M. Cargnello & C. B. Field, 2019. "Methane removal and atmospheric restoration," Nature Sustainability, Nature, vol. 2(6), pages 436-438, June.
    2. Yan Tang & Chithra Asokan & Mingjie Xu & George W. Graham & Xiaoqing Pan & Phillip Christopher & Jun Li & Philippe Sautet, 2019. "Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Lina Cao & Wei Liu & Qiquan Luo & Ruoting Yin & Bing Wang & Jonas Weissenrieder & Markus Soldemo & Huan Yan & Yue Lin & Zhihu Sun & Chao Ma & Wenhua Zhang & Si Chen & Hengwei Wang & Qiaoqiao Guan & Ta, 2019. "Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2," Nature, Nature, vol. 565(7741), pages 631-635, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    2. Marti Checa & Addis S. Fuhr & Changhyo Sun & Rama Vasudevan & Maxim Ziatdinov & Ilia Ivanov & Seok Joon Yun & Kai Xiao & Alp Sehirlioglu & Yunseok Kim & Pankaj Sharma & Kyle P. Kelley & Neus Domingo &, 2023. "High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Hao Tan & Bing Tang & Ying Lu & Qianqian Ji & Liyang Lv & Hengli Duan & Na Li & Yao Wang & Sihua Feng & Zhi Li & Chao Wang & Fengchun Hu & Zhihu Sun & Wensheng Yan, 2022. "Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Zheng Chen & Zhangyun Liu & Xin Xu, 2023. "Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO2 single-atom catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiong, Hanbing & Ming, Tingzhen & Wu, Yongjia & Wang, Caixia & Chen, Qiong & Li, Wei & Mu, Liwen & de Richter, Renaud & Yuan, Yanping, 2022. "Numerical analysis of solar chimney power plant integrated with CH4 photocatalytic reactors for fighting global warming under ambient crosswind," Renewable Energy, Elsevier, vol. 201(P1), pages 678-690.
    6. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Zhimin Jia & Xuetao Qin & Yunlei Chen & Xiangbin Cai & Zirui Gao & Mi Peng & Fei Huang & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Wu Zhou & Hongyang Liu & Ding Ma, 2022. "Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Junjie Li & Ya-fei Jiang & Qi Wang & Cong-Qiao Xu & Duojie Wu & Mohammad Norouzi Banis & Keegan R. Adair & Kieran Doyle-Davis & Debora Motta Meira & Y. Zou Finfrock & Weihan Li & Lei Zhang & Tsun-Kong, 2021. "A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Bin Shao & Zhi-Qiang Wang & Xue-Qing Gong & Honglai Liu & Feng Qian & P. Hu & Jun Hu, 2023. "Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45483-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.