IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42967-z.html
   My bibliography  Save this article

Hi-C metagenome sequencing reveals soil phage–host interactions

Author

Listed:
  • Ruonan Wu

    (Pacific Northwest National Laboratory)

  • Michelle R. Davison

    (Pacific Northwest National Laboratory)

  • William C. Nelson

    (Pacific Northwest National Laboratory)

  • Montana L. Smith

    (Pacific Northwest National Laboratory)

  • Mary S. Lipton

    (Pacific Northwest National Laboratory)

  • Janet K. Jansson

    (Pacific Northwest National Laboratory)

  • Ryan S. McClure

    (Pacific Northwest National Laboratory)

  • Jason E. McDermott

    (Pacific Northwest National Laboratory
    Oregon Health & Science University)

  • Kirsten S. Hofmockel

    (Pacific Northwest National Laboratory
    Iowa State University)

Abstract

Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi–C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.

Suggested Citation

  • Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42967-z
    DOI: 10.1038/s41467-023-42967-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42967-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42967-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    2. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    3. Ruonan Wu & Clyde A. Smith & Garry W. Buchko & Ian K. Blaby & David Paez-Espino & Nikos C. Kyrpides & Yasuo Yoshikuni & Jason E. McDermott & Kirsten S. Hofmockel & John R. Cort & Janet K. Jansson, 2022. "Structural characterization of a soil viral auxiliary metabolic gene product – a functional chitosanase," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yiqiang Chen & Yulin Wang & David Paez-Espino & Martin F. Polz & Tong Zhang, 2021. "Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Robert D. Stewart & Marc D. Auffret & Amanda Warr & Andrew H. Wiser & Maximilian O. Press & Kyle W. Langford & Ivan Liachko & Timothy J. Snelling & Richard J. Dewhurst & Alan W. Walker & Rainer Roehe , 2018. "Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Grimaldi & Roberto Visintainer & Giuseppe Jurman, 2011. "RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-19, December.
    2. Yuxuan Du & Fengzhu Sun, 2023. "MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    4. Mingyi Wang & Jerome Verdier & Vagner A Benedito & Yuhong Tang & Jeremy D Murray & Yinbing Ge & Jörg D Becker & Helena Carvalho & Christian Rogers & Michael Udvardi & Ji He, 2013. "LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    5. Yuxuan Du & Jed A. Fuhrman & Fengzhu Sun, 2023. "ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Maghsoodi, Masoume, 2016. "A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods," MPRA Paper 79743, University Library of Munich, Germany.
    7. Holger Weishaupt & Patrik Johansson & Christopher Engström & Sven Nelander & Sergei Silvestrov & Fredrik J Swartling, 2017. "Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1089-1105, December.
    8. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    10. Hossein Zare & Mostafa Kaveh & Arkady Khodursky, 2011. "Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-7, August.
    11. Diambra, L., 2011. "Coarse-grain reconstruction of genetic networks from expression levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2198-2207.
    12. Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    13. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013. "Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    15. repec:jss:jstsof:37:i01 is not listed on IDEAS
    16. Kinzy Tyler G. & Starr Timothy K. & Tseng George C. & Ho Yen-Yi, 2019. "Meta-analytic framework for modeling genetic coexpression dynamics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    17. Lerato Molieleng & Pieter Fourie & Ifeoma Nwafor, 2021. "Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    18. Joeri Ruyssinck & Vân Anh Huynh-Thu & Pierre Geurts & Tom Dhaene & Piet Demeester & Yvan Saeys, 2014. "NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    19. Zhiguang Qiu & Li Yuan & Chun-Ang Lian & Bin Lin & Jie Chen & Rong Mu & Xuejiao Qiao & Liyu Zhang & Zheng Xu & Lu Fan & Yunzeng Zhang & Shanquan Wang & Junyi Li & Huiluo Cao & Bing Li & Baowei Chen & , 2024. "BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.
    21. Shuhei Kimura & Masanao Sato & Mariko Okada-Hatakeyama, 2013. "Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42967-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.