IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008734.html
   My bibliography  Save this article

Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies

Author

Listed:
  • Lulu Shang
  • Jennifer A Smith
  • Xiang Zhou

Abstract

Genome-wide association studies (GWASs) have identified many SNPs associated with various common diseases. Understanding the biological functions of these identified SNP associations requires identifying disease/trait relevant tissues or cell types. Here, we develop a network method, CoCoNet, to facilitate the identification of trait-relevant tissues or cell types. Different from existing approaches, CoCoNet incorporates tissue-specific gene co-expression networks constructed from either bulk or single cell RNA sequencing (RNAseq) studies with GWAS data for trait-tissue inference. In particular, CoCoNet relies on a covariance regression network model to express gene-level effect measurements for the given GWAS trait as a function of the tissue-specific co-expression adjacency matrix. With a composite likelihood-based inference algorithm, CoCoNet is scalable to tens of thousands of genes. We validate the performance of CoCoNet through extensive simulations. We apply CoCoNet for an in-depth analysis of four neurological disorders and four autoimmune diseases, where we integrate the corresponding GWASs with bulk RNAseq data from 38 tissues and single cell RNAseq data from 10 cell types. In the real data applications, we show how CoCoNet can help identify specific glial cell types relevant for neurological disorders and identify disease-targeted colon tissues as relevant for autoimmune diseases.Author summary: Identifying trait-relevant tissues or cell types is important for understanding disease etiology. Several computational methods have been recently developed to integrate omics studies with genome-wide association studies (GWASs) in order to infer trait-relevant tissues or cell types. For example, both LDSC-SEG and RolyPoly rely on genes that are specifically expressed in a given tissue or cell type for inferring trait-tissue relevance. However, these previous methods have thus far ignored an important biological feature of gene expression data; that is, genes are interconnected with each other and are co-regulated together. Such gene co-expression pattern occurs in a tissue specific or cell type specific fashion and may contain invaluable information for inferring trait-tissue relevance. Here, we develop a network model to take advantage of the tissue-specific or cell type specific gene co-expression patterns inferred from bulk RNA sequencing or single cell RNA sequencing studies into GWASs. We illustrate the benefits of our method in identifying trait-relevant tissues or cell types through simulations and applications to real data sets.

Suggested Citation

  • Lulu Shang & Jennifer A Smith & Xiang Zhou, 2020. "Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies," PLOS Genetics, Public Library of Science, vol. 16(4), pages 1-30, April.
  • Handle: RePEc:plo:pgen00:1008734
    DOI: 10.1371/journal.pgen.1008734
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008734
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008734&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    2. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    3. Mingyi Wang & Jerome Verdier & Vagner A Benedito & Yuhong Tang & Jeremy D Murray & Yinbing Ge & Jörg D Becker & Helena Carvalho & Christian Rogers & Michael Udvardi & Ji He, 2013. "LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    4. Maghsoodi, Masoume, 2016. "A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods," MPRA Paper 79743, University Library of Munich, Germany.
    5. Marco Grimaldi & Roberto Visintainer & Giuseppe Jurman, 2011. "RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-19, December.
    6. Holger Weishaupt & Patrik Johansson & Christopher Engström & Sven Nelander & Sergei Silvestrov & Fredrik J Swartling, 2017. "Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1089-1105, December.
    7. Qingfei Pan & Liang Ding & Siarhei Hladyshau & Xiangyu Yao & Jiayu Zhou & Lei Yan & Yogesh Dhungana & Hao Shi & Chenxi Qian & Xinran Dong & Chad Burdyshaw & Joao Pedro Veloso & Alireza Khatamian & Zhe, 2025. "scMINER: a mutual information-based framework for clustering and hidden driver inference from single-cell transcriptomics data," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    8. repec:plo:pcbi00:1005379 is not listed on IDEAS
    9. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    10. Hossein Zare & Mostafa Kaveh & Arkady Khodursky, 2011. "Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-7, August.
    11. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Joeri Ruyssinck & Vân Anh Huynh-Thu & Pierre Geurts & Tom Dhaene & Piet Demeester & Yvan Saeys, 2014. "NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    13. Tom Wilderjans & Dirk Depril & Iven Van Mechelen, 2013. "Additive Biclustering: A Comparison of One New and Two Existing ALS Algorithms," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 56-74, April.
    14. Takanori Hasegawa & Rui Yamaguchi & Masao Nagasaki & Satoru Miyano & Seiya Imoto, 2014. "Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-19, August.
    15. Kannan Venkateshan & Tegner Jesper, 2016. "Adaptive input data transformation for improved network reconstruction with information theoretic algorithms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 507-520, December.
    16. Yu Chang & Yujie Fang & Jiahan Liu & Tiantian Ye & Xiaokai Li & Haifu Tu & Ying Ye & Yao Wang & Lizhong Xiong, 2024. "Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    18. Benafsh Husain & F Alex Feltus, 2019. "EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    19. Edoardo Bertolini & Brian R. Rice & Max Braud & Jiani Yang & Sarah Hake & Josh Strable & Alexander E. Lipka & Andrea L. Eveland, 2025. "Regulatory variation controlling architectural pleiotropy in maize," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Zhen Yang & Yen‐Yi Ho, 2022. "Modeling dynamic correlation in zero‐inflated bivariate count data with applications to single‐cell RNA sequencing data," Biometrics, The International Biometric Society, vol. 78(2), pages 766-776, June.
    21. Qiao Wen Tan & Peng Ken Lim & Zhong Chen & Asher Pasha & Nicholas Provart & Marius Arend & Zoran Nikoloski & Marek Mutwil, 2023. "Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.