IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62455-w.html
   My bibliography  Save this article

Ecological connectivity of genomic markers of antimicrobial resistance in Escherichia coli in Hong Kong

Author

Listed:
  • Xiaoqing Xu

    (The University of Hong Kong)

  • Yunqi Lin

    (The University of Hong Kong)

  • Yu Deng

    (The University of Hong Kong)

  • Lei Liu

    (The University of Hong Kong)

  • Dou Wang

    (The University of Hong Kong)

  • Qinling Tang

    (The University of Hong Kong)

  • Chunxiao Wang

    (The University of Hong Kong)

  • Xi Chen

    (The University of Hong Kong)

  • You Che

    (The University of Hong Kong)

  • Ethan R. Wyrsch

    (University of Technology Sydney)

  • Veronica M. Jarocki

    (University of Technology Sydney
    Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food and Environments)

  • Steven P. Djordjevic

    (University of Technology Sydney)

  • Tong Zhang

    (The University of Hong Kong
    The University of Hong Kong)

Abstract

Antibiotic-resistant Escherichia coli (E. coli) is a major contributor to the global burden of antimicrobial resistance (AMR). While the One Health concept emphasizes the connection of human, animal, and environmental health, genome-resolved and quantitatively integrated analyses of microbial exchange across ecological compartments remain limited. Here we show that E. coli populations from urban aquatic ecosystems in Hong Kong, representing human, animal, and environmental sources, exhibit close genetic relatedness. Using Nanopore long-read sequencing, we generated near-complete genomes for 1016 E. coli isolates collected over one year. These isolates encompassed all main phylogroups, 223 sequence types, 141 antibiotic resistance gene subtypes, and 2647 circular plasmids. 142 clonal strain-sharing events were detected between human-associated and environmental water samples. Additionally, 195 plasmids were shared across all three source-attributed sectors. Conjugation assays confirmed that several plasmids were functionally transmissible across ecological boundaries. To quantify these patterns, we established a genomic framework integrating sequence type similarity, genetic relatedness, and clonal sharing to assess ecological connectivity. Our results indicate that ecological connectivity may facilitate AMR dissemination, highlighting the importance of integrated strategies to monitor and manage resistance risks across sectors within the One Health framework.

Suggested Citation

  • Xiaoqing Xu & Yunqi Lin & Yu Deng & Lei Liu & Dou Wang & Qinling Tang & Chunxiao Wang & Xi Chen & You Che & Ethan R. Wyrsch & Veronica M. Jarocki & Steven P. Djordjevic & Tong Zhang, 2025. "Ecological connectivity of genomic markers of antimicrobial resistance in Escherichia coli in Hong Kong," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62455-w
    DOI: 10.1038/s41467-025-62455-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62455-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62455-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chirag Jain & Luis M. Rodriguez-R & Adam M. Phillippy & Konstantinos T. Konstantinidis & Srinivas Aluru, 2018. "High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Leonardos Mageiros & Guillaume Méric & Sion C. Bayliss & Johan Pensar & Ben Pascoe & Evangelos Mourkas & Jessica K. Calland & Koji Yahara & Susan Murray & Thomas S. Wilkinson & Lisa K. Williams & Matt, 2021. "Genome evolution and the emergence of pathogenicity in avian Escherichia coli," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Xudong Li & Huifeng Hu & Yongwei Zhu & Taiquan Wang & Youlan Lu & Xiangru Wang & Zhong Peng & Ming Sun & Huanchun Chen & Jinshui Zheng & Chen Tan, 2024. "Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Robert D. Stewart & Marc D. Auffret & Amanda Warr & Andrew H. Wiser & Maximilian O. Press & Kyle W. Langford & Ivan Liachko & Timothy J. Snelling & Richard J. Dewhurst & Alan W. Walker & Rainer Roehe , 2018. "Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Leonardos Mageiros & Guillaume Méric & Sion C. Bayliss & Johan Pensar & Ben Pascoe & Evangelos Mourkas & Jessica K. Calland & Koji Yahara & Susan Murray & Thomas S. Wilkinson & Lisa K. Williams & Matt, 2021. "Author Correction: Genome evolution and the emergence of pathogenicity in avian Escherichia coli," Nature Communications, Nature, vol. 12(1), pages 1-2, December.
    6. Ágnes Becsei & Alessandro Fuschi & Saria Otani & Ravi Kant & Ilja Weinstein & Patricia Alba & József Stéger & Dávid Visontai & Christian Brinch & Miranda Graaf & Claudia M. E. Schapendonk & Antonio Ba, 2024. "Time-series sewage metagenomics distinguishes seasonal, human-derived and environmental microbial communities potentially allowing source-attributed surveillance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiandui Mi & Xiaoping Jing & Chouxian Ma & Fuyu Shi & Ze Cao & Xin Yang & Yiwen Yang & Apurva Kakade & Weiwei Wang & Ruijun Long, 2024. "A metagenomic catalogue of the ruminant gut archaeome," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Jay Vornhagen & Emily K. Roberts & Lavinia Unverdorben & Sophia Mason & Alieysa Patel & Ryan Crawford & Caitlyn L. Holmes & Yuang Sun & Alexandra Teodorescu & Evan S. Snitkin & Lili Zhao & Patricia J., 2022. "Combined comparative genomics and clinical modeling reveals plasmid-encoded genes are independently associated with Klebsiella infection," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Brooke C. Wilson & Michele Zuppi & José G. B. Derraik & Benjamin B. Albert & Ry Y. Tweedie-Cullen & Karen S. W. Leong & Kathryn L. Beck & Tommi Vatanen & Justin M. O’Sullivan & Wayne S. Cutfield, 2025. "Long-term health outcomes in adolescents with obesity treated with faecal microbiota transplantation: 4-year follow-up," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Max E. Schön & Vasily V. Zlatogursky & Rohan P. Singh & Camille Poirier & Susanne Wilken & Varsha Mathur & Jürgen F. H. Strassert & Jarone Pinhassi & Alexandra Z. Worden & Patrick J. Keeling & Thijs J, 2021. "Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Nenad Macesic & Jane Hawkey & Ben Vezina & Jessica A. Wisniewski & Hugh Cottingham & Luke V. Blakeway & Taylor Harshegyi & Katherine Pragastis & Gnei Zweena Badoordeen & Amanda Dennison & Denis W. Spe, 2023. "Genomic dissection of endemic carbapenem resistance reveals metallo-beta-lactamase dissemination through clonal, plasmid and integron transfer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Minghui Cheng & Yingjie Xu & Xiao Cui & Xin Wei & Yundi Chang & Jun Xu & Cheng Lei & Lei Xue & Yifan Zheng & Zhang Wang & Lingtong Huang & Min Zheng & Hong Luo & Yuxin Leng & Chao Jiang, 2024. "Deep longitudinal lower respiratory tract microbiome profiling reveals genome-resolved functional and evolutionary dynamics in critical illness," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. S. Nooij & N. Plomp & I. M. J. G. Sanders & L. Schout & A. E. Meulen & E. M. Terveer & J. M. Norman & N. Karcher & M. F. Larralde & R. H. A. M. Vossen & S. L. Kloet & K. N. Faber & H. J. M. Harmsen & , 2025. "Metagenomic global survey and in-depth genomic analyses of Ruminococcus gnavus reveal differences across host lifestyle and health status," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Yuxuan Du & Fengzhu Sun, 2023. "MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Jean-Sebastien Gounot & Minghao Chia & Denis Bertrand & Woei-Yuh Saw & Aarthi Ravikrishnan & Adrian Low & Yichen Ding & Amanda Hui Qi Ng & Linda Wei Lin Tan & Yik-Ying Teo & Henning Seedorf & Niranjan, 2022. "Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Vincent Somerville & Nadine Thierer & Remo S. Schmidt & Alexandra Roetschi & Lauriane Braillard & Monika Haueter & Hélène Berthoud & Noam Shani & Ueli Ah & Florent Mazel & Philipp Engel, 2024. "Genomic and phenotypic imprints of microbial domestication on cheese starter cultures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Xinwei Song & Yiling Wang & Youjing Wang & Kankan Zhao & Di Tong & Ruichuan Gao & Xiaofei Lv & Dedong Kong & Yunjie Ruan & Mengcen Wang & Xianjin Tang & Fangbai Li & Yongming Luo & Yongguan Zhu & Jian, 2025. "Rhizosphere-triggered viral lysogeny mediates microbial metabolic reprogramming to enhance arsenic oxidation," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    14. Jordy Evan Sulaiman & Jaron Thompson & Yili Qian & Eugenio I. Vivas & Christian Diener & Sean M. Gibbons & Nasia Safdar & Ophelia S. Venturelli, 2024. "Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. M. C. Rühlemann & C. Bang & J. F. Gogarten & B. M. Hermes & M. Groussin & S. Waschina & M. Poyet & M. Ulrich & C. Akoua-Koffi & T. Deschner & J. J. Muyembe-Tamfum & M. M. Robbins & M. Surbeck & R. M. , 2024. "Functional host-specific adaptation of the intestinal microbiome in hominids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Ruobing Wang & Anru Zhang & Shijun Sun & Guankun Yin & Xingyu Wu & Qi Ding & Qi Wang & Fengning Chen & Shuyi Wang & Lucy Dorp & Yawei Zhang & Longyang Jin & Xiaojuan Wang & Francois Balloux & Hui Wang, 2024. "Increase in antioxidant capacity associated with the successful subclone of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11-KL64," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Lerato Molieleng & Pieter Fourie & Ifeoma Nwafor, 2021. "Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    18. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Nils Giordano & Marinna Gaudin & Camille Trottier & Erwan Delage & Charlotte Nef & Chris Bowler & Samuel Chaffron, 2024. "Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Ling Zhong & Menghan Zhang & Libing Sun & Yu Yang & Bo Wang & Haibing Yang & Qiang Shen & Yu Xia & Jiarui Cui & Hui Hang & Yi Ren & Bo Pang & Xiangyu Deng & Yahui Zhan & Heng Li & Zhemin Zhou, 2023. "Distributed genotyping and clustering of Neisseria strains reveal continual emergence of epidemic meningococcus over a century," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62455-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.