IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42790-6.html
   My bibliography  Save this article

The potential of CO2-based production cycles in biotechnology to fight the climate crisis

Author

Listed:
  • Simone Bachleitner

    (Institute of Microbiology and Microbial Biotechnology)

  • Özge Ata

    (Institute of Microbiology and Microbial Biotechnology
    Austrian Centre of Industrial Biotechnology)

  • Diethard Mattanovich

    (Institute of Microbiology and Microbial Biotechnology
    Austrian Centre of Industrial Biotechnology)

Abstract

Rising CO2 emissions have pushed scientists to develop new technologies for a more sustainable bio-based economy. Microbial conversion of CO2 and CO2-derived carbon substrates into valuable compounds can contribute to carbon neutrality and sustainability. Here, we discuss the potential of C1 carbon sources as raw materials to produce energy, materials, and food and feed using microbial cell factories. We provide an overview of potential microbes, natural and synthetic C1 utilization pathways, and compare their metabolic driving forces. Finally, we sketch a future in which C1 substrates replace traditional feedstocks and we evaluate the costs associated with such an endeavor.

Suggested Citation

  • Simone Bachleitner & Özge Ata & Diethard Mattanovich, 2023. "The potential of CO2-based production cycles in biotechnology to fight the climate crisis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42790-6
    DOI: 10.1038/s41467-023-42790-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42790-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42790-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pamela P. Peralta-Yahya & Fuzhong Zhang & Stephen B. del Cardayre & Jay D. Keasling, 2012. "Microbial engineering for the production of advanced biofuels," Nature, Nature, vol. 488(7411), pages 320-328, August.
    2. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Tomas Linder, 2019. "Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(2), pages 265-278, April.
    4. Benzhen Yao & Tiancun Xiao & Ofentse A. Makgae & Xiangyu Jie & Sergio Gonzalez-Cortes & Shaoliang Guan & Angus I. Kirkland & Jonathan R. Dilworth & Hamid A. Al-Megren & Saeed M. Alshihri & Peter J. Do, 2020. "Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. M. G. Kalyuzhnaya & S. Yang & O. N. Rozova & N. E. Smalley & J. Clubb & A. Lamb & G. A. Nagana Gowda & D. Raftery & Y. Fu & F. Bringel & S. Vuilleumier & D. A. C. Beck & Y. A. Trotsenko & V. N. Khmele, 2013. "Highly efficient methane biocatalysis revealed in a methanotrophic bacterium," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    6. Emily Elhacham & Liad Ben-Uri & Jonathan Grozovski & Yinon M. Bar-On & Ron Milo, 2020. "Global human-made mass exceeds all living biomass," Nature, Nature, vol. 588(7838), pages 442-444, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seeram Ramakrishna & Wayne Hu & Rajan Jose, 2023. "Sustainability in Numbers by Data Analytics," Circular Economy and Sustainability,, Springer.
    2. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    3. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Gössling, Stefan & Humpe, Andreas, 2023. "Net-zero aviation: Time for a new business model?," Journal of Air Transport Management, Elsevier, vol. 107(C).
    5. Egger, Claudine & Plutzar, Christoph & Mayer, Andreas & Dullinger, Iwona & Dullinger, Stefan & Essl, Franz & Gattringer, Andreas & Bohner, Andreas & Haberl, Helmut & Gaube, Veronika, 2022. "Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria)," Ecological Economics, Elsevier, vol. 201(C).
    6. Natasya Nabilla Hairon Azhar & Desmond Teck-Chye Ang & Rosazlin Abdullah & Jennifer Ann Harikrishna & Acga Cheng, 2022. "Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    7. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    9. Ennio M. Palmeira & Gregório L. S. Araújo & Eder C. G. Santos, 2021. "Sustainable Solutions with Geosynthetics and Alternative Construction Materials—A Review," Sustainability, MDPI, vol. 13(22), pages 1-29, November.
    10. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Margarita Ignatyeva & Vera Yurak & Alexey Dushin & Vladimir Strovsky & Sergey Zavyalov & Alexander Malyshev & Polina Karimova, 2021. "How Far Away Are World Economies from Circularity: Assessing the Capacity of Circular Economy Policy Packages in the Operation of Raw Materials and Industrial Wastes," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    12. Angstmann, Marius & Gärtner, Stefan & Angstmann, Marius, 2023. "Abriss, Neubau oder Sanierung - CO2-Emissionen im Gebäudesektor: Nicht nur sparsamer, sondern auch weniger," Forschung Aktuell 09/2023, Institut Arbeit und Technik (IAT), Westfälische Hochschule, University of Applied Sciences.
    13. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
    14. Hámor-Vidó, Mária & Hámor, Tamás & Czirok, Lili, 2021. "Underground space, the legal governance of a critical resource in circular economy," Resources Policy, Elsevier, vol. 73(C).
    15. Ulugbek Azimov & Victor Okoro & Hector H. Hernandez, 2021. "Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    16. Takuma Watari & Zhi Cao & Sho Hata & Keisuke Nansai, 2022. "Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    18. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    19. Huston, Simon, 2020. "Academic letter on French Indochina War: metaphors for strategic insight," OSF Preprints 2p9by, Center for Open Science.
    20. Cecília Szigeti & Zoltán Major & Dániel Róbert Szabó & Áron Szennay, 2023. "The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary," Resources, MDPI, vol. 12(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42790-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.