IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41508-y.html
   My bibliography  Save this article

The role of intra-guild indirect interactions in assembling plant-pollinator networks

Author

Listed:
  • Sabine Dritz

    (University of California Davis)

  • Rebecca A. Nelson

    (University of California Davis)

  • Fernanda S. Valdovinos

    (University of California Davis)

Abstract

Understanding the assembly of plant-pollinator communities has become critical to their conservation given the rise of species invasions, extirpations, and species’ range shifts. Over the course of assembly, colonizer establishment produces core interaction patterns, called motifs, which shape the trajectory of assembling network structure. Dynamic assembly models can advance our understanding of this process by linking the transient dynamics of colonizer establishment to long-term network development. In this study, we investigate the role of intra-guild indirect interactions and adaptive foraging in shaping the structure of assembling plant-pollinator networks by developing: 1) an assembly model that includes population dynamics and adaptive foraging, and 2) a motif analysis tracking the intra-guild indirect interactions of colonizing species throughout their establishment. We find that while colonizers leverage indirect competition for shared mutualistic resources to establish, adaptive foraging maintains the persistence of inferior competitors. This produces core motifs in which specialist and generalist species coexist on shared mutualistic resources which leads to the emergence of nested networks. Further, the persistence of specialists develops richer and less connected networks which is consistent with empirical data. Our work contributes new understanding and methods to study the effects of species’ intra-guild indirect interactions on community assembly.

Suggested Citation

  • Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41508-y
    DOI: 10.1038/s41467-023-41508-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41508-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41508-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernanda S. Valdovinos & Eric L. Berlow & Pablo Moisset de Espanés & Rodrigo Ramos-Jiliberto & Diego P. Vázquez & Neo D. Martinez, 2018. "Species traits and network structure predict the success and impacts of pollinator invasions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Alberto Pascual-García & Ugo Bastolla, 2017. "Mutualism supports biodiversity when the direct competition is weak," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    3. Marie-France Cattin & Louis-Félix Bersier & Carolin Banašek-Richter & Richard Baltensperger & Jean-Pierre Gabriel, 2004. "Phylogenetic constraints and adaptation explain food-web structure," Nature, Nature, vol. 427(6977), pages 835-839, February.
    4. Paulo R. Guimarães & Mathias M. Pires & Pedro Jordano & Jordi Bascompte & John N. Thompson, 2017. "Indirect effects drive coevolution in mutualistic networks," Nature, Nature, vol. 550(7677), pages 511-514, October.
    5. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    6. Serguei Saavedra & Felix Reed-Tsochas & Brian Uzzi, 2009. "A simple model of bipartite cooperation for ecological and organizational networks," Nature, Nature, vol. 457(7228), pages 463-466, January.
    7. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    8. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    3. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.
    4. Su, Min & Yang, Yuanqi, 2020. "Parasite richness and network architecture jointly affect multihost community composition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A Data Driven Network Approach to Rank Countries Production Diversity and Food Specialization," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    6. Lucas N Joppa & Rich Williams, 2013. "Modeling the Building Blocks of Biodiversity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    7. Pablo Lechón-Alonso & Tom Clegg & Jacob Cook & Thomas P Smith & Samraat Pawar, 2021. "The role of competition versus cooperation in microbial community coalescence," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-16, November.
    8. Cristina Fiera & Jan Christian Habel & Werner Ulrich, 2018. "Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
    9. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    10. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    11. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    12. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    13. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    14. Benadi, Gita & Blüthgen, Nico & Hovestadt, Thomas & Poethke, Hans-Joachim, 2013. "Contrasting specialization–stability relationships in plant–animal mutualistic systems," Ecological Modelling, Elsevier, vol. 258(C), pages 65-73.
    15. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    16. Hristov, Jordan & Clough, Yann & Sahlin, Ullrika & Smith, Henrik G. & Stjernman, Martin & Olsson, Ola & Sahrbacher, Amanda & Brady, Mark V., 2020. "Impacts of the EU's Common Agricultural Policy “Greening” reform on agricultural development, biodiversity, and ecosystem services," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(4), pages 716-738.
    17. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    18. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    19. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    20. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41508-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.