IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38589-0.html
   My bibliography  Save this article

Spectroscopic signature of obstructed surface states in SrIn2P2

Author

Listed:
  • Xiang-Rui Liu

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

  • Hanbin Deng

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

  • Yuntian Liu

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

  • Zhouyi Yin

    (Southern University of Science and Technology (SUSTech))

  • Congrun Chen

    (Southern University of Science and Technology (SUSTech))

  • Yu-Peng Zhu

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

  • Yichen Yang

    (Chinese Academy of Sciences)

  • Zhicheng Jiang

    (Chinese Academy of Sciences)

  • Zhengtai Liu

    (Chinese Academy of Sciences)

  • Mao Ye

    (Chinese Academy of Sciences)

  • Dawei Shen

    (Chinese Academy of Sciences)

  • Jia-Xin Yin

    (Princeton University)

  • Kedong Wang

    (Southern University of Science and Technology (SUSTech))

  • Qihang Liu

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy
    Southern University of Science and Technology)

  • Yue Zhao

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

  • Chang Liu

    (Southern University of Science and Technology (SUSTech)
    International Quantum Academy)

Abstract

The century-long development of surface sciences has witnessed the discoveries of a variety of quantum states. In the recently proposed “obstructed atomic insulators”, symmetric charges are pinned at virtual sites where no real atoms reside. The cleavage through these sites could lead to a set of obstructed surface states with partial electronic occupation. Here, utilizing scanning tunneling microscopy, angle-resolved photoemission spectroscopy and first-principles calculations, we observe spectroscopic signature of obstructed surface states in SrIn2P2. We find that a pair of surface states that are originated from the pristine obstructed surface states split in energy by a unique surface reconstruction. The upper branch is marked with a striking differential conductance peak followed by negative differential conductance, signaling its localized nature, while the lower branch is found to be highly dispersive. This pair of surface states is in consistency with our calculational results. Our finding not only demonstrates a surface quantum state induced by a new type of bulk-boundary correspondence, but also provides a platform for exploring efficient catalysts and related surface engineering.

Suggested Citation

  • Xiang-Rui Liu & Hanbin Deng & Yuntian Liu & Zhouyi Yin & Congrun Chen & Yu-Peng Zhu & Yichen Yang & Zhicheng Jiang & Zhengtai Liu & Mao Ye & Dawei Shen & Jia-Xin Yin & Kedong Wang & Qihang Liu & Yue Z, 2023. "Spectroscopic signature of obstructed surface states in SrIn2P2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38589-0
    DOI: 10.1038/s41467-023-38589-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38589-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38589-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kimoon Lee & Sung Wng Kim & Yoshitake Toda & Satoru Matsuishi & Hideo Hosono, 2013. "Dicalcium nitride as a two-dimensional electride with an anionic electron layer," Nature, Nature, vol. 494(7437), pages 336-340, February.
    2. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Seung Yong Lee & Dong Cheol Lim & Md Salman Khan & Jeong Yun Hwang & Hyung Sub Kim & Kyu Hyung Lee & Sung Wng Kim, 2023. "Magnetic quasi-atomic electrons driven reversible structural and magnetic transitions between electride and its hydrides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    6. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Nikhil Mathur & Arunabh Mukherjee & Xingyu Gao & Jialun Luo & Brendan A. McCullian & Tongcang Li & A. Nick Vamivakas & Gregory D. Fuchs, 2022. "Excited-state spin-resonance spectroscopy of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − defect centers in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Sara A. López-Paz & Zurab Guguchia & Vladimir Y. Pomjakushin & Catherine Witteveen & Antonio Cervellino & Hubertus Luetkens & Nicola Casati & Alberto F. Morpurgo & Fabian O. von Rohr, 2022. "Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Md Gius Uddin & Susobhan Das & Abde Mayeen Shafi & Lei Wang & Xiaoqi Cui & Fedor Nigmatulin & Faisal Ahmed & Andreas C. Liapis & Weiwei Cai & Zongyin Yang & Harri Lipsanen & Tawfique Hasan & Hoon Hahn, 2024. "Broadband miniaturized spectrometers with a van der Waals tunnel diode," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Wei Liu & Viktor Ivády & Zhi-Peng Li & Yuan-Ze Yang & Shang Yu & Yu Meng & Zhao-An Wang & Nai-Jie Guo & Fei-Fei Yan & Qiang Li & Jun-Feng Wang & Jin-Shi Xu & Xiao Liu & Zong-Quan Zhou & Yang Dong & Xi, 2022. "Coherent dynamics of multi-spin V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − center in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Linfeng Ai & Enze Zhang & Jinshan Yang & Xiaoyi Xie & Yunkun Yang & Zehao Jia & Yuda Zhang & Shanshan Liu & Zihan Li & Pengliang Leng & Xiangyu Cao & Xingdan Sun & Tongyao Zhang & Xufeng Kou & Zheng H, 2021. "Van der Waals ferromagnetic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Ruoxin Wang & Jianhao Qian & Xiaofang Chen & Ze-Xian Low & Yu Chen & Hongyu Ma & Heng-An Wu & Cara M. Doherty & Durga Acharya & Zongli Xie & Matthew R. Hill & Wei Shen & Fengchao Wang & Huanting Wang, 2023. "Pyro-layered heterostructured nanosheet membrane for hydrogen separation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xiangbin Cai & Zefei Wu & Xu Han & Yong Chen & Shuigang Xu & Jiangxiazi Lin & Tianyi Han & Pingge He & Xuemeng Feng & Liheng An & Run Shi & Jingwei Wang & Zhehan Ying & Yuan Cai & Mengyuan Hua & Junwe, 2022. "Bridging the gap between atomically thin semiconductors and metal leads," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Srabanti Ghosh & Susmita Bera & Soumita Samajdar & Sourabh Pal, 2023. "Phosphorus based hybrid materials for green fuel generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    18. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Valerio Di Giulio & P. A. D. Gonçalves & F. Javier García de Abajo, 2022. "An image interaction approach to quantum-phase engineering of two-dimensional materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Roberto Rizzato & Martin Schalk & Stephan Mohr & Jens C. Hermann & Joachim P. Leibold & Fleming Bruckmaier & Giovanna Salvitti & Chenjiang Qian & Peirui Ji & Georgy V. Astakhov & Ulrich Kentsch & Manf, 2023. "Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38589-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.