IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64267-4.html
   My bibliography  Save this article

Long-range moiré tuning effect via inter-layer drag interaction

Author

Listed:
  • Lijun Zhu

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Xiaoqiang Liu

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Xinyi Wan

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Huijuan Dai

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Zhenhua Qiao

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Lin Li

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Changgan Zeng

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

Abstract

Constructing moiré superlattices has been demonstrated to be a powerful approach for tailoring the electronic properties of two-dimensional van der Waals materials. However, the periodic moiré potential diminishes rapidly away from the interface between the two stacked layers, restricting the moiré modulation only at the superlattice interface. Here, we present an alternative strategy to extend the influence range of the moiré tuning through drag interaction, a dynamic process involving inter-layer momentum/energy transfer mediated by Coulomb scatterings. By fabricating a unique electronic double-layer structure comprising a graphene moiré superlattice and a pristine graphene layer, we observe several intriguing inter-layer drag behaviors dominated by moiré physics. Notably, measuring the drag voltage within the pristine graphene layer, located distant from the moiré superlattice, reveals clear moiré tuning effects on the drag signal, including self-similar mapping spectra and the Hofstadter’s butterfly spectra of drag resistance in the presence of a magnetic field. The realization of such moiré drag effect thus establishes a new paradigm for remote moiré engineering, offering a gateway to explore rich moiré physics in the emerging two-dimensional systems.

Suggested Citation

  • Lijun Zhu & Xiaoqiang Liu & Xinyi Wan & Huijuan Dai & Zhenhua Qiao & Lin Li & Changgan Zeng, 2025. "Long-range moiré tuning effect via inter-layer drag interaction," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64267-4
    DOI: 10.1038/s41467-025-64267-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64267-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64267-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ciaran Mullan & Sergey Slizovskiy & Jun Yin & Ziwei Wang & Qian Yang & Shuigang Xu & Yaping Yang & Benjamin A. Piot & Sheng Hu & Takashi Taniguchi & Kenji Watanabe & Kostya S. Novoselov & A. K. Geim &, 2023. "Mixing of moiré-surface and bulk states in graphite," Nature, Nature, vol. 620(7975), pages 756-761, August.
    2. L. A. Ponomarenko & R. V. Gorbachev & G. L. Yu & D. C. Elias & R. Jalil & A. A. Patel & A. Mishchenko & A. S. Mayorov & C. R. Woods & J. R. Wallbank & M. Mucha-Kruczynski & B. A. Piot & M. Potemski & , 2013. "Cloning of Dirac fermions in graphene superlattices," Nature, Nature, vol. 497(7451), pages 594-597, May.
    3. Emma C. Regan & Danqing Wang & Chenhao Jin & M. Iqbal Bakti Utama & Beini Gao & Xin Wei & Sihan Zhao & Wenyu Zhao & Zuocheng Zhang & Kentaro Yumigeta & Mark Blei & Johan D. Carlström & Kenji Watanabe , 2020. "Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices," Nature, Nature, vol. 579(7799), pages 359-363, March.
    4. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Yuanbo Zhang & Tsung-Ta Tang & Caglar Girit & Zhao Hao & Michael C. Martin & Alex Zettl & Michael F. Crommie & Y. Ron Shen & Feng Wang, 2009. "Direct observation of a widely tunable bandgap in bilayer graphene," Nature, Nature, vol. 459(7248), pages 820-823, June.
    6. Heonjoon Park & Jiaqi Cai & Eric Anderson & Yinong Zhang & Jiayi Zhu & Xiaoyu Liu & Chong Wang & William Holtzmann & Chaowei Hu & Zhaoyu Liu & Takashi Taniguchi & Kenji Watanabe & Jiun-Haw Chu & Ting , 2023. "Observation of fractionally quantized anomalous Hall effect," Nature, Nature, vol. 622(7981), pages 74-79, October.
    7. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    8. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    9. C. R. Dean & L. Wang & P. Maher & C. Forsythe & F. Ghahari & Y. Gao & J. Katoch & M. Ishigami & P. Moon & M. Koshino & T. Taniguchi & K. Watanabe & K. L. Shepard & J. Hone & P. Kim, 2013. "Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices," Nature, Nature, vol. 497(7451), pages 598-602, May.
    10. Jiaqi Cai & Eric Anderson & Chong Wang & Xiaowei Zhang & Xiaoyu Liu & William Holtzmann & Yinong Zhang & Fengren Fan & Takashi Taniguchi & Kenji Watanabe & Ying Ran & Ting Cao & Liang Fu & Di Xiao & W, 2023. "Signatures of fractional quantum anomalous Hall states in twisted MoTe2," Nature, Nature, vol. 622(7981), pages 63-68, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xirui Wang & Cheng Xu & Samuel Aronson & Daniel Bennett & Nisarga Paul & Philip J. D. Crowley & Clément Collignon & Kenji Watanabe & Takashi Taniguchi & Raymond Ashoori & Efthimios Kaxiras & Yang Zhan, 2025. "Moiré band structure engineering using a twisted boron nitride substrate," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Eric A. Arsenault & Yiliu Li & Birui Yang & Takashi Taniguchi & Kenji Watanabe & James C. Hone & Cory R. Dean & Xiaodong Xu & X.-Y. Zhu, 2025. "Time-domain signatures of distinct correlated insulators in a moiré superlattice," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    5. Chuyi Tuo & Ming-Rui Li & Zhengzhi Wu & Wen Sun & Hong Yao, 2025. "Theory of topological superconductivity and antiferromagnetic correlated insulators in twisted bilayer WSe2," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Richen Xiong & Samuel L. Brantly & Kaixiang Su & Jacob H. Nie & Zihan Zhang & Rounak Banerjee & Hayley Ruddick & Kenji Watanabe & Takashi Taniguchi & Seth Ariel Tongay & Cenke Xu & Chenhao Jin, 2024. "Tunable exciton valley-pseudospin orders in moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Qinghai Tan & Abdullah Rasmita & Zhaowei Zhang & Xuran Dai & Ruihua He & Xiangbin Cai & Kenji Watanabe & Takashi Taniguchi & Hongbing Cai & Wei-bo Gao, 2025. "Enhanced coherence from correlated states in WSe2/MoS2 moiré heterobilayer," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    8. Mayukh Kumar Ray & Mingxuan Fu & Youzhe Chen & Taishi Chen & Takuya Nomoto & Shiro Sakai & Motoharu Kitatani & Motoaki Hirayama & Shusaku Imajo & Takahiro Tomita & Akito Sakai & Daisuke Nishio-Hamane , 2025. "Zero-field Hall effect emerging from a non-Fermi liquid in a collinear antiferromagnet V1/3NbS2," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Jinjae Kim & Jiwon Park & Hyojin Choi & Taeho Kim & Soonyoung Cha & Yewon Lee & Kenji Watanabe & Takashi Taniguchi & Jonghwan Kim & Moon-Ho Jo & Hyunyong Choi, 2024. "Correlation-driven nonequilibrium exciton site transition in a WSe2/WS2 moiré supercell," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Le Zhang & Jing Ding & Hanxiao Xiang & Naitian Liu & Wenqiang Zhou & Linfeng Wu & Na Xin & Kenji Watanabe & Takashi Taniguchi & Shuigang Xu, 2024. "Electronic ferroelectricity in monolayer graphene moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Dacen Waters & Ruiheng Su & Ellis Thompson & Anna Okounkova & Esmeralda Arreguin-Martinez & Minhao He & Katherine Hinds & Kenji Watanabe & Takashi Taniguchi & Xiaodong Xu & Ya-Hui Zhang & Joshua Folk , 2024. "Topological flat bands in a family of multilayer graphene moiré lattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Daniel Shaffer & Jian Wang & Luiz H. Santos, 2022. "Unconventional self-similar Hofstadter superconductivity from repulsive interactions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Jubin Nathawat & Ishiaka Mansaray & Kohei Sakanashi & Naoto Wada & Michael D. Randle & Shenchu Yin & Keke He & Nargess Arabchigavkani & Ripudaman Dixit & Bilal Barut & Miao Zhao & Harihara Ramamoorthy, 2023. "Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconducting states of Moiré-gapped graphene," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Patrick Knüppel & Jiacheng Zhu & Yiyu Xia & Zhengchao Xia & Zhongdong Han & Yihang Zeng & Kenji Watanabe & Takashi Taniguchi & Jie Shan & Kin Fai Mak, 2025. "Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    19. Cheng Huang & Nikolaos Parthenios & Maksim Ulybyshev & Xu Zhang & Fakher F. Assaad & Laura Classen & Zi Yang Meng, 2025. "Angle-tuned Gross-Neveu quantum criticality in twisted bilayer graphene," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64267-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.