IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37518-5.html
   My bibliography  Save this article

Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit

Author

Listed:
  • Dario Lago-Rivera

    (The Barcelona Institute of Science and Technology)

  • Jelena V. Rakonjac

    (The Barcelona Institute of Science and Technology)

  • Samuele Grandi

    (The Barcelona Institute of Science and Technology)

  • Hugues de Riedmatten

    (The Barcelona Institute of Science and Technology
    ICREA-Institució Catalana de Recerca i Estudis Avançats)

Abstract

Quantum teleportation is an essential capability for quantum networks, allowing the transmission of quantum bits (qubits) without a direct exchange of quantum information. Its implementation between distant parties requires teleportation of the quantum information to matter qubits that store it for long enough to allow users to perform further processing. Here we demonstrate long distance quantum teleportation from a photonic qubit at telecom wavelength to a matter qubit, stored as a collective excitation in a solid-state quantum memory. Our system encompasses an active feed-forward scheme, implementing a conditional phase shift on the qubit retrieved from the memory, as required by the protocol. Moreover, our approach is time-multiplexed, allowing for an increase in the teleportation rate, and is directly compatible with the deployed telecommunication networks, two key features for its scalability and practical implementation, that will play a pivotal role in the development of long-distance quantum communication.

Suggested Citation

  • Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37518-5
    DOI: 10.1038/s41467-023-37518-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37518-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37518-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dik Bouwmeester & Jian-Wei Pan & Klaus Mattle & Manfred Eibl & Harald Weinfurter & Anton Zeilinger, 1997. "Experimental quantum teleportation," Nature, Nature, vol. 390(6660), pages 575-579, December.
    2. Tim Leent & Matthias Bock & Florian Fertig & Robert Garthoff & Sebastian Eppelt & Yiru Zhou & Pooja Malik & Matthias Seubert & Tobias Bauer & Wenjamin Rosenfeld & Wei Zhang & Christoph Becher & Harald, 2022. "Entangling single atoms over 33 km telecom fibre," Nature, Nature, vol. 607(7917), pages 69-73, July.
    3. C. W. Chou & H. de Riedmatten & D. Felinto & S. V. Polyakov & S. J. van Enk & H. J. Kimble, 2005. "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature, Nature, vol. 438(7069), pages 828-832, December.
    4. Dario Lago-Rivera & Samuele Grandi & Jelena V. Rakonjac & Alessandro Seri & Hugues de Riedmatten, 2021. "Telecom-heralded entanglement between multimode solid-state quantum memories," Nature, Nature, vol. 594(7861), pages 37-40, June.
    5. Nicolas Maring & Pau Farrera & Kutlu Kutluer & Margherita Mazzera & Georg Heinze & Hugues de Riedmatten, 2017. "Photonic quantum state transfer between a cold atomic gas and a crystal," Nature, Nature, vol. 551(7681), pages 485-488, November.
    6. W.B. Gao & P. Fallahi & E. Togan & A. Delteil & Y.S. Chin & J. Miguel-Sanchez & A. Imamoğlu, 2013. "Quantum teleportation from a propagating photon to a solid-state spin qubit," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    7. Tian-Shu Yang & Zong-Quan Zhou & Yi-Lin Hua & Xiao Liu & Zong-Feng Li & Pei-Yun Li & Yu Ma & Chao Liu & Peng-Jun Liang & Xue Li & Yi-Xin Xiao & Jun Hu & Chuan-Feng Li & Guang-Can Guo, 2018. "Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. B. Hensen & H. Bernien & A. E. Dréau & A. Reiserer & N. Kalb & M. S. Blok & J. Ruitenberg & R. F. L. Vermeulen & R. N. Schouten & C. Abellán & W. Amaya & V. Pruneri & M. W. Mitchell & M. Markham & D. , 2015. "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres," Nature, Nature, vol. 526(7575), pages 682-686, October.
    9. Xiao Liu & Jun Hu & Zong-Feng Li & Xue Li & Pei-Yun Li & Peng-Jun Liang & Zong-Quan Zhou & Chuan-Feng Li & Guang-Can Guo, 2021. "Heralded entanglement distribution between two absorptive quantum memories," Nature, Nature, vol. 594(7861), pages 41-45, June.
    10. Ji-Gang Ren & Ping Xu & Hai-Lin Yong & Liang Zhang & Sheng-Kai Liao & Juan Yin & Wei-Yue Liu & Wen-Qi Cai & Meng Yang & Li Li & Kui-Xing Yang & Xuan Han & Yong-Qiang Yao & Ji Li & Hai-Yan Wu & Song Wa, 2017. "Ground-to-satellite quantum teleportation," Nature, Nature, vol. 549(7670), pages 70-73, September.
    11. Holger P. Specht & Christian Nölleke & Andreas Reiserer & Manuel Uphoff & Eden Figueroa & Stephan Ritter & Gerhard Rempe, 2011. "A single-atom quantum memory," Nature, Nature, vol. 473(7346), pages 190-193, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. repec:arp:sjossm:2021:p:93-99 is not listed on IDEAS
    3. Abhishek Bhardwaj, 2023. "A Practical Approach to SOS Relaxations for Detecting Quantum Entanglement," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 869-891, September.
    4. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Karthik, Mekala & Lalwani, Jitesh & Jajodia, Babita, 2022. "Proposed Quantum Text Teleportation Protocol (QTTP) for Secure Text Transfer by using Quantum Teleportation and Huffman Coding," OSF Preprints 4svxf, Center for Open Science.
    6. Yang, Yan-Han & Yang, Xue & Luo, Ming-Xing, 2023. "Device-independently verifying full network nonlocality of quantum networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    7. Gomes, V.S. & Dieguez, P.R. & Vasconcelos, H.M., 2022. "Realism-based nonlocality: Invariance under local unitary operations and asymptotic decay for thermal correlated states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    8. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Naceur Gaaloul & Matthias Meister & Robin Corgier & Annie Pichery & Patrick Boegel & Waldemar Herr & Holger Ahlers & Eric Charron & Jason R. Williams & Robert J. Thompson & Wolfgang P. Schleich & Erns, 2022. "A space-based quantum gas laboratory at picokelvin energy scales," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    12. Wenyuan Liu & Andrea Nanetti & Siew Ann Cheong, 2017. "Knowledge evolution in physics research: An analysis of bibliographic coupling networks," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    13. Jie Zhao & Hao Jeng & Lorcán O. Conlon & Spyros Tserkis & Biveen Shajilal & Kui Liu & Timothy C. Ralph & Syed M. Assad & Ping Koy Lam, 2023. "Enhancing quantum teleportation efficacy with noiseless linear amplification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Chao Wang & Ignatius William Primaatmaja & Hong Jie Ng & Jing Yan Haw & Raymond Ho & Jianran Zhang & Gong Zhang & Charles Lim, 2023. "Provably-secure quantum randomness expansion with uncharacterised homodyne detection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Abouelkhir, N. & EL Hadfi, H. & Slaoui, A. & Ahl Laamara, R., 2023. "A simple analytical expression of quantum Fisher and Skew information and their dynamics under decoherence channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    16. Seida, C. & Seddik, S. & Hassouni, Y. & Allati, A. El, 2022. "Memory effects on bidirectional teleportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Mateusz Mazelanik & Adam Leszczyński & Michał Parniak, 2022. "Optical-domain spectral super-resolution via a quantum-memory-based time-frequency processor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Ruotian Gong & Xinyi Du & Eli Janzen & Vincent Liu & Zhongyuan Liu & Guanghui He & Bingtian Ye & Tongcang Li & Norman Y. Yao & James H. Edgar & Erik A. Henriksen & Chong Zu, 2024. "Isotope engineering for spin defects in van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Xiaodong Qiu & Haoxu Guo & Lixiang Chen, 2023. "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. A. Haykal & R. Tanos & N. Minotto & A. Durand & F. Fabre & J. Li & J. H. Edgar & V. Ivády & A. Gali & T. Michel & A. Dréau & B. Gil & G. Cassabois & V. Jacques, 2022. "Decoherence of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − spin defects in monoisotopic hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    21. Timothy Y. Chow, 2023. "A Mathematician Reads the Kalam Cosmological Argument," The Mathematical Intelligencer, Springer, vol. 45(2), pages 150-158, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37518-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.