IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35274-6.html
   My bibliography  Save this article

A space-based quantum gas laboratory at picokelvin energy scales

Author

Listed:
  • Naceur Gaaloul

    (Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School)

  • Matthias Meister

    (German Aerospace Center (DLR), Institute of Quantum Technologies)

  • Robin Corgier

    (Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
    Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay
    LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université 61 avenue de l’Observatoire)

  • Annie Pichery

    (Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
    Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay)

  • Patrick Boegel

    (Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University)

  • Waldemar Herr

    (Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik (SI))

  • Holger Ahlers

    (Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
    Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik (SI))

  • Eric Charron

    (Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay)

  • Jason R. Williams

    (Jet Propulsion Laboratory, California Institute of Technology)

  • Robert J. Thompson

    (Jet Propulsion Laboratory, California Institute of Technology)

  • Wolfgang P. Schleich

    (German Aerospace Center (DLR), Institute of Quantum Technologies
    Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University
    Texas A&M University
    Texas A&M University)

  • Ernst M. Rasel

    (Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School)

  • Nicholas P. Bigelow

    (University of Rochester)

Abstract

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

Suggested Citation

  • Naceur Gaaloul & Matthias Meister & Robin Corgier & Annie Pichery & Patrick Boegel & Waldemar Herr & Holger Ahlers & Eric Charron & Jason R. Williams & Robert J. Thompson & Wolfgang P. Schleich & Erns, 2022. "A space-based quantum gas laboratory at picokelvin energy scales," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35274-6
    DOI: 10.1038/s41467-022-35274-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35274-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35274-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David C. Aveline & Jason R. Williams & Ethan R. Elliott & Chelsea Dutenhoffer & James R. Kellogg & James M. Kohel & Norman E. Lay & Kamal Oudrhiri & Robert F. Shotwell & Nan Yu & Robert J. Thompson, 2020. "Observation of Bose–Einstein condensates in an Earth-orbiting research lab," Nature, Nature, vol. 582(7811), pages 193-197, June.
    2. W. Hänsel & P. Hommelhoff & T. W. Hänsch & J. Reichel, 2001. "Bose–Einstein condensation on a microelectronic chip," Nature, Nature, vol. 413(6855), pages 498-501, October.
    3. Martina Gebbe & Jan-Niclas Siemß & Matthias Gersemann & Hauke Müntinga & Sven Herrmann & Claus Lämmerzahl & Holger Ahlers & Naceur Gaaloul & Christian Schubert & Klemens Hammerer & Sven Abend & Ernst , 2021. "Twin-lattice atom interferometry," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Sheng-Kai Liao & Wen-Qi Cai & Wei-Yue Liu & Liang Zhang & Yang Li & Ji-Gang Ren & Juan Yin & Qi Shen & Yuan Cao & Zheng-Ping Li & Feng-Zhi Li & Xia-Wei Chen & Li-Hua Sun & Jian-Jun Jia & Jin-Cai Wu & , 2017. "Satellite-to-ground quantum key distribution," Nature, Nature, vol. 549(7670), pages 43-47, September.
    5. Dennis Becker & Maike D. Lachmann & Stephan T. Seidel & Holger Ahlers & Aline N. Dinkelaker & Jens Grosse & Ortwin Hellmig & Hauke Müntinga & Vladimir Schkolnik & Thijs Wendrich & André Wenzlawski & B, 2018. "Space-borne Bose–Einstein condensation for precision interferometry," Nature, Nature, vol. 562(7727), pages 391-395, October.
    6. R. A. Carollo & D. C. Aveline & B. Rhyno & S. Vishveshwara & C. Lannert & J. D. Murphree & E. R. Elliott & J. R. Williams & R. J. Thompson & N. Lundblad, 2022. "Observation of ultracold atomic bubbles in orbital microgravity," Nature, Nature, vol. 606(7913), pages 281-286, June.
    7. Ji-Gang Ren & Ping Xu & Hai-Lin Yong & Liang Zhang & Sheng-Kai Liao & Juan Yin & Wei-Yue Liu & Wen-Qi Cai & Meng Yang & Li Li & Kui-Xing Yang & Xuan Han & Yong-Qiang Yao & Ji Li & Hai-Yan Wu & Song Wa, 2017. "Ground-to-satellite quantum teleportation," Nature, Nature, vol. 549(7670), pages 70-73, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jongmin Lee & Roger Ding & Justin Christensen & Randy R. Rosenthal & Aaron Ison & Daniel P. Gillund & David Bossert & Kyle H. Fuerschbach & William Kindel & Patrick S. Finnegan & Joel R. Wendt & Micha, 2022. "A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Mohd Hirzi Adnan & Zuriati Ahmad Zukarnain & Nur Ziadah Harun, 2022. "Quantum Key Distribution for 5G Networks: A Review, State of Art and Future Directions," Future Internet, MDPI, vol. 14(3), pages 1-28, February.
    4. Guimbeau, Amanda & Ji, Xinde James & Menon, Nidhiya & Rodgers, Yana van der Meulen, 2023. "Mining and women’s agency: Evidence on acceptance of domestic violence and shared decision-making in India," World Development, Elsevier, vol. 162(C).
    5. Sebastian Philipp Neumann & Alexander Buchner & Lukas Bulla & Martin Bohmann & Rupert Ursin, 2022. "Continuous entanglement distribution over a transnational 248 km fiber link," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Jie Zhao & Hao Jeng & Lorcán O. Conlon & Spyros Tserkis & Biveen Shajilal & Kui Liu & Timothy C. Ralph & Syed M. Assad & Ping Koy Lam, 2023. "Enhancing quantum teleportation efficacy with noiseless linear amplification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35274-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.