IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v390y1997i6660d10.1038_37539.html
   My bibliography  Save this article

Experimental quantum teleportation

Author

Listed:
  • Dik Bouwmeester

    (Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria)

  • Jian-Wei Pan

    (Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria)

  • Klaus Mattle

    (Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria)

  • Manfred Eibl

    (Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria)

  • Harald Weinfurter

    (Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria)

  • Anton Zeilinger

    (Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria)

Abstract

Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

Suggested Citation

  • Dik Bouwmeester & Jian-Wei Pan & Klaus Mattle & Manfred Eibl & Harald Weinfurter & Anton Zeilinger, 1997. "Experimental quantum teleportation," Nature, Nature, vol. 390(6660), pages 575-579, December.
  • Handle: RePEc:nat:nature:v:390:y:1997:i:6660:d:10.1038_37539
    DOI: 10.1038/37539
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/37539
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/37539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leilei Li & Hengji Li & Chaoyang Li & Xiubo Chen & Yan Chang & Yuguang Yang & Jian Li, 2018. "The security analysis of E91 protocol in collective-rotation noise channel," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
    2. Abouelkhir, N. & EL Hadfi, H. & Slaoui, A. & Ahl Laamara, R., 2023. "A simple analytical expression of quantum Fisher and Skew information and their dynamics under decoherence channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    3. repec:arp:sjossm:2021:p:93-99 is not listed on IDEAS
    4. Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Seida, C. & Seddik, S. & Hassouni, Y. & Allati, A. El, 2022. "Memory effects on bidirectional teleportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Karthik, Mekala & Lalwani, Jitesh & Jajodia, Babita, 2022. "Proposed Quantum Text Teleportation Protocol (QTTP) for Secure Text Transfer by using Quantum Teleportation and Huffman Coding," OSF Preprints 4svxf, Center for Open Science.
    7. Xiaodong Qiu & Haoxu Guo & Lixiang Chen, 2023. "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Sebastian Philipp Neumann & Alexander Buchner & Lukas Bulla & Martin Bohmann & Rupert Ursin, 2022. "Continuous entanglement distribution over a transnational 248 km fiber link," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Abhishek Bhardwaj, 2023. "A Practical Approach to SOS Relaxations for Detecting Quantum Entanglement," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 869-891, September.
    10. Wenyuan Liu & Andrea Nanetti & Siew Ann Cheong, 2017. "Knowledge evolution in physics research: An analysis of bibliographic coupling networks," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    11. Peter J. Olver, 2022. "Motion and Continuity," The Mathematical Intelligencer, Springer, vol. 44(3), pages 241-249, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:390:y:1997:i:6660:d:10.1038_37539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.