IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33330-9.html
   My bibliography  Save this article

Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics

Author

Listed:
  • Yong Yu

    (Southern University of Science and Technology
    National University of Singapore)

  • Xiao Xu

    (Southern University of Science and Technology)

  • Yan Wang

    (Southern University of Science and Technology)

  • Baohai Jia

    (Southern University of Science and Technology)

  • Shan Huang

    (Southern University of Science and Technology)

  • Xiaobin Qiang

    (Southern University of Science and Technology)

  • Bin Zhu

    (Southern University of Science and Technology)

  • Peijian Lin

    (Southern University of Science and Technology)

  • Binbin Jiang

    (Southern University of Science and Technology)

  • Shixuan Liu

    (Southern University of Science and Technology)

  • Xia Qi

    (Shaanxi Normal University; Key Laboratory for Macromolecular Science of Shaanxi Province)

  • Kefan Pan

    (Southern University of Science and Technology)

  • Di Wu

    (Shaanxi Normal University; Key Laboratory for Macromolecular Science of Shaanxi Province)

  • Haizhou Lu

    (Southern University of Science and Technology)

  • Michel Bosman

    (National University of Singapore)

  • Stephen J. Pennycook

    (National University of Singapore)

  • Lin Xie

    (Southern University of Science and Technology)

  • Jiaqing He

    (Southern University of Science and Technology
    Southern University of Science and Technology)

Abstract

Thermoelectrics enable direct heat-to-electricity transformation, but their performance has so far been restricted by the closely coupled carrier and phonon transport. Here, we demonstrate that the quantum gaps, a class of planar defects characterized by nano-sized potential wells, can decouple carrier and phonon transport by selectively scattering phonons while allowing carriers to pass effectively. We choose the van der Waals gap in GeTe-based materials as a representative example of the quantum gap to illustrate the decoupling mechanism. The nano-sized potential well of the quantum gap in GeTe-based materials is directly visualized by in situ electron holography. Moreover, a more diffused distribution of quantum gaps results in further reduction of lattice thermal conductivity, which leads to a peak ZT of 2.6 at 673 K and an average ZT of 1.6 (323–723 K) in a GeTe system. The quantum gap can also be engineered into other thermoelectrics, which provides a general method for boosting their thermoelectric performance.

Suggested Citation

  • Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33330-9
    DOI: 10.1038/s41467-022-33330-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33330-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33330-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    2. Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
    3. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    4. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingchao Qin & Dongyang Wang & Tao Hong & Yuping Wang & Dongrui Liu & Ziyuan Wang & Xiang Gao & Zhen-Hua Ge & Li-Dong Zhao, 2023. "High thermoelectric efficiency realized in SnSe crystals via structural modulation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    2. Zhi Li & Wenhao Li & Zhen Chen, 2017. "Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant," Energies, MDPI, vol. 10(10), pages 1-15, September.
    3. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yulong Li & Xun Shi & Dudi Ren & Jikun Chen & Lidong Chen, 2015. "Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe," Energies, MDPI, vol. 8(7), pages 1-11, June.
    9. Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
    10. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    12. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Hwang, Junphil & Kim, Hoon & Wijethunge, Dimuthu & Nandihalli, Nagaraj & Eom, Yoomin & Park, Hwanjoo & Kim, Jungwon & Kim, Woochul, 2017. "More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials," Applied Energy, Elsevier, vol. 205(C), pages 1459-1466.
    14. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    16. Dianta Ginting & Chan-Chieh Lin & Jong-Soo Rhyee, 2019. "Synergetic Approach for Superior Thermoelectric Performance in PbTe-PbSe-PbS Quaternary Alloys and Composites," Energies, MDPI, vol. 13(1), pages 1-29, December.
    17. Fabian Garmroudi & Michael Parzer & Alexander Riss & Andrei V. Ruban & Sergii Khmelevskyi & Michele Reticcioli & Matthias Knopf & Herwig Michor & Andrej Pustogow & Takao Mori & Ernst Bauer, 2022. "Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Bingchao Qin & Dongyang Wang & Tao Hong & Yuping Wang & Dongrui Liu & Ziyuan Wang & Xiang Gao & Zhen-Hua Ge & Li-Dong Zhao, 2023. "High thermoelectric efficiency realized in SnSe crystals via structural modulation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
    20. Kevin Bethke & Virgil Andrei & Klaus Rademann, 2016. "Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33330-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.