IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33288-8.html
   My bibliography  Save this article

Synthetic neuromorphic computing in living cells

Author

Listed:
  • Luna Rizik

    (Technion - Israel Institute of Technology)

  • Loai Danial

    (Technion - Israel Institute of Technology)

  • Mouna Habib

    (Technion - Israel Institute of Technology)

  • Ron Weiss

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Ramez Daniel

    (Technion - Israel Institute of Technology)

Abstract

Computational properties of neuronal networks have been applied to computing systems using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Analogously to their revolutionary impact on computing, neuro-inspired models can transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and readily reconfigurable for different tasks. To this end, we introduce the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in Escherichia coli cells. We successfully modify perceptgene parameters to create devices that encode a minimum, maximum, and average of analog inputs. With these devices, we create multi-layer perceptgene circuits that compute a soft majority function, perform an analog-to-digital conversion, and implement a ternary switch. We also create a programmable perceptgene circuit whose computation can be modified from OR to AND logic using small molecule induction. Finally, we show that our approach enables circuit optimization via artificial intelligence algorithms.

Suggested Citation

  • Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33288-8
    DOI: 10.1038/s41467-022-33288-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33288-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33288-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ximing Li & Luna Rizik & Valeriia Kravchik & Maria Khoury & Netanel Korin & Ramez Daniel, 2021. "Synthetic neural-like computing in microbial consortia for pattern recognition," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Jacob R. Rubens & Gianluca Selvaggio & Timothy K. Lu, 2016. "Synthetic mixed-signal computation in living cells," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    3. M. Prezioso & F. Merrikh-Bayat & B. D. Hoskins & G. C. Adam & K. K. Likharev & D. B. Strukov, 2015. "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, Nature, vol. 521(7550), pages 61-64, May.
    4. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    5. Alvin Tamsir & Jeffrey J. Tabor & Christopher A. Voigt, 2011. "Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’," Nature, Nature, vol. 469(7329), pages 212-215, January.
    6. Miles W. Gander & Justin D. Vrana & William E. Voje & James M. Carothers & Eric Klavins, 2017. "Digital logic circuits in yeast with CRISPR-dCas9 NOR gates," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    7. Amir Pandi & Mathilde Koch & Peter L. Voyvodic & Paul Soudier & Jerome Bonnet & Manish Kushwaha & Jean-Loup Faulon, 2019. "Metabolic perceptrons for neural computing in biological systems," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    8. Federica Cella & Liliana Wroblewska & Ron Weiss & Velia Siciliano, 2018. "Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    9. Stephanie K. Aoki & Gabriele Lillacci & Ankit Gupta & Armin Baumschlager & David Schweingruber & Mustafa Khammash, 2019. "A universal biomolecular integral feedback controller for robust perfect adaptation," Nature, Nature, vol. 570(7762), pages 533-537, June.
    10. Alexander A. Green & Jongmin Kim & Duo Ma & Pamela A. Silver & James J. Collins & Peng Yin, 2017. "Complex cellular logic computation using ribocomputing devices," Nature, Nature, vol. 548(7665), pages 117-121, August.
    11. Ramiz Daniel & Jacob R. Rubens & Rahul Sarpeshkar & Timothy K. Lu, 2013. "Synthetic analog computation in living cells," Nature, Nature, vol. 497(7451), pages 619-623, May.
    12. Andrew H. Ng & Taylor H. Nguyen & Mariana Gómez-Schiavon & Galen Dods & Robert A. Langan & Scott E. Boyken & Jennifer A. Samson & Lucas M. Waldburger & John E. Dueber & David Baker & Hana El-Samad, 2019. "Modular and tunable biological feedback control using a de novo protein switch," Nature, Nature, vol. 572(7768), pages 265-269, August.
    13. Jeff Hasty & David McMillen & J. J. Collins, 2002. "Engineered gene circuits," Nature, Nature, vol. 420(6912), pages 224-230, November.
    14. Jesse Stricker & Scott Cookson & Matthew R. Bennett & William H. Mather & Lev S. Tsimring & Jeff Hasty, 2008. "A fast, robust and tunable synthetic gene oscillator," Nature, Nature, vol. 456(7221), pages 516-519, November.
    15. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    16. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    17. Lulu Qian & Erik Winfree & Jehoshua Bruck, 2011. "Neural network computation with DNA strand displacement cascades," Nature, Nature, vol. 475(7356), pages 368-372, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    3. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    4. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    5. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    6. Javier Macia & Romilde Manzoni & Núria Conde & Arturo Urrios & Eulàlia de Nadal & Ricard Solé & Francesc Posas, 2016. "Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-24, February.
    7. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    8. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    9. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    11. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    12. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    13. Lucia Marucci & David A W Barton & Irene Cantone & Maria Aurelia Ricci & Maria Pia Cosma & Stefania Santini & Diego di Bernardo & Mario di Bernardo, 2009. "How to Turn a Genetic Circuit into a Synthetic Tunable Oscillator, or a Bistable Switch," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    14. Linlin Tang & Zhijin Tian & Jin Cheng & Yijing Zhang & Yongxiu Song & Yan Liu & Jinghao Wang & Pengfei Zhang & Yonggang Ke & Friedrich C. Simmel & Jie Song, 2023. "Circular single-stranded DNA as switchable vector for gene expression in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    16. Baiyang Liu & Christian Cuba Samaniego & Matthew R. Bennett & Elisa Franco & James Chappell, 2023. "A portable regulatory RNA array design enables tunable and complex regulation across diverse bacteria," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    19. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    20. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33288-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.