IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v497y2013i7451d10.1038_nature12148.html
   My bibliography  Save this article

Synthetic analog computation in living cells

Author

Listed:
  • Ramiz Daniel

    (Analog Circuits and Biological Systems Group, Research Lab of Electronics, Massachusetts Institute of Technology
    Synthetic Biology Group, Research Lab of Electronics, Massachusetts Institute of Technology
    Synthetic Biology Center, Massachusetts Institute of Technology)

  • Jacob R. Rubens

    (Synthetic Biology Group, Research Lab of Electronics, Massachusetts Institute of Technology
    Synthetic Biology Center, Massachusetts Institute of Technology
    MIT Microbiology Program, Massachusetts Institute of Technology)

  • Rahul Sarpeshkar

    (Analog Circuits and Biological Systems Group, Research Lab of Electronics, Massachusetts Institute of Technology
    Synthetic Biology Center, Massachusetts Institute of Technology
    MIT Microbiology Program, Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Timothy K. Lu

    (Synthetic Biology Group, Research Lab of Electronics, Massachusetts Institute of Technology
    Synthetic Biology Center, Massachusetts Institute of Technology
    MIT Microbiology Program, Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Synthetic analog gene circuits can be engineered to execute logarithmically linear sensing, addition, ratiometric and power-law computations in living cells using just three transcription factors.

Suggested Citation

  • Ramiz Daniel & Jacob R. Rubens & Rahul Sarpeshkar & Timothy K. Lu, 2013. "Synthetic analog computation in living cells," Nature, Nature, vol. 497(7451), pages 619-623, May.
  • Handle: RePEc:nat:nature:v:497:y:2013:i:7451:d:10.1038_nature12148
    DOI: 10.1038/nature12148
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12148
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Nadine Bongaerts & Zainab Edoo & Ayan A. Abukar & Xiaohu Song & Sebastián Sosa-Carrillo & Sarah Haggenmueller & Juline Savigny & Sophie Gontier & Ariel B. Lindner & Edwin H. Wintermute, 2022. "Low-cost anti-mycobacterial drug discovery using engineered E. coli," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    4. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:497:y:2013:i:7451:d:10.1038_nature12148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.