IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33133-y.html
   My bibliography  Save this article

Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management

Author

Listed:
  • Shuo Li

    (Tsinghua University)

  • Yong Zhang

    (Tsinghua University)

  • Xiaoping Liang

    (Tsinghua University)

  • Haomin Wang

    (Tsinghua University)

  • Haojie Lu

    (Tsinghua University)

  • Mengjia Zhu

    (Tsinghua University)

  • Huimin Wang

    (Tsinghua University)

  • Mingchao Zhang

    (Tsinghua University)

  • Xinping Qiu

    (Tsinghua University)

  • Yafeng Song

    (Beijing Sport University)

  • Yingying Zhang

    (Tsinghua University)

Abstract

Numerous studies have shown flexible electronics play important roles in health management. The way of power supply is always an essential factor of devices and self-powered ones are very attractive because of the fabrication easiness, usage comfort and aesthetics of the system. In this work, based on the metal-air redox reaction, which is usually used in designing metal-air batteries, we design a self-powered chemoelectric humidity sensor where a silk fibroin (SF) and LiBr gel matrix containing parallel aligned graphene oxide (GO) flakes serve as the electrolyte. The abundant hydrophilic groups in GO/SF and the hygroscopicity of LiBr lead to tight dependence of the output current on the humidity, enabling the sensor high sensitivity (0.09 μA/s/1%), fast response (1.05 s) and quick recovery (0.80 s). As proofs of concept, we design an all-in-one respiratory monitoring-diagnosing-treatment system and a non-contact human-machine interface, demonstrating the applications of the chemoelectric humidity sensor in health management.

Suggested Citation

  • Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33133-y
    DOI: 10.1038/s41467-022-33133-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33133-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33133-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhaodong Huang & Yue Hou & Tairan Wang & Yuwei Zhao & Guojin Liang & Xinliang Li & Ying Guo & Qi Yang & Ze Chen & Qing Li & Longtao Ma & Jun Fan & Chunyi Zhi, 2021. "Manipulating anion intercalation enables a high-voltage aqueous dual ion battery," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    3. Qilin Hua & Junlu Sun & Haitao Liu & Rongrong Bao & Ruomeng Yu & Junyi Zhai & Caofeng Pan & Zhong Lin Wang, 2018. "Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Jin Ge & Xu Wang & Michael Drack & Oleksii Volkov & Mo Liang & Gilbert Santiago Cañón Bermúdez & Rico Illing & Changan Wang & Shengqiang Zhou & Jürgen Fassbender & Martin Kaltenbrunner & Denys Makarov, 2019. "A bimodal soft electronic skin for tactile and touchless interaction in real time," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Zhaodong Huang & Yue Hou & Tairan Wang & Yuwei Zhao & Guojin Liang & Xinliang Li & Ying Guo & Qi Yang & Ze Chen & Qing Li & Longtao Ma & Jun Fan & Chunyi Zhi, 2021. "Author Correction: Manipulating anion intercalation enables a high-voltage aqueous dual ion battery," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    6. Han Ouyang & Zhuo Liu & Ning Li & Bojing Shi & Yang Zou & Feng Xie & Ye Ma & Zhe Li & Hu Li & Qiang Zheng & Xuecheng Qu & Yubo Fan & Zhong Lin Wang & Hao Zhang & Zhou Li, 2019. "Symbiotic cardiac pacemaker," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Chi Zhang & Jinkai Chen & Weipeng Xuan & Shuyi Huang & Bin You & Wenjun Li & Lingling Sun & Hao Jin & Xiaozhi Wang & Shurong Dong & Jikui Luo & A. J. Flewitt & Zhong Lin Wang, 2020. "Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Davood Sabaghi & Zhiyong Wang & Preeti Bhauriyal & Qiongqiong Lu & Ahiud Morag & Daria Mikhailovia & Payam Hashemi & Dongqi Li & Christof Neumann & Zhongquan Liao & Anna Maria Dominic & Ali Shaygan Ni, 2023. "Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Caixia Li & Yongsheng Zhu & Fengxin Sun & Changjun Jia & Tianming Zhao & Yupeng Mao & Haidong Yang, 2022. "Research Progress on Triboelectric Nanogenerator for Sports Applications," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Xueguang Lu & Feilong Zhang & Liguo Zhu & Shan Peng & Jiazhen Yan & Qiwu Shi & Kefan Chen & Xue Chang & Hongfu Zhu & Cheng Zhang & Wanxia Huang & Qiang Cheng, 2024. "A terahertz meta-sensor array for 2D strain mapping," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Jin Pyo Lee & Hanhyeok Jang & Yeonwoo Jang & Hyeonseo Song & Suwoo Lee & Pooi See Lee & Jiyun Kim, 2024. "Encoding of multi-modal emotional information via personalized skin-integrated wireless facial interface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Zhuo Liu & Yiran Hu & Xuecheng Qu & Ying Liu & Sijing Cheng & Zhengmin Zhang & Yizhu Shan & Ruizeng Luo & Sixian Weng & Hui Li & Hongxia Niu & Min Gu & Yan Yao & Bojing Shi & Ningning Wang & Wei Hua &, 2024. "A self-powered intracardiac pacemaker in swine model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Jian Li & Huiling Jia & Jingkun Zhou & Xingcan Huang & Long Xu & Shengxin Jia & Zhan Gao & Kuanming Yao & Dengfeng Li & Binbin Zhang & Yiming Liu & Ya Huang & Yue Hu & Guangyao Zhao & Zitong Xu & Jiyu, 2023. "Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Jinrong Wang & Weibin Lin & Zhuo Chen & Valeriia O. Nikolaeva & Lukman O. Alimi & Niveen M. Khashab, 2024. "Smart touchless human–machine interaction based on crystalline porous cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    19. Haoran Jin & Zesheng Zheng & Zequn Cui & Ying Jiang & Geng Chen & Wenlong Li & Zhimin Wang & Jilei Wang & Chuanshi Yang & Weitao Song & Xiaodong Chen & Yuanjin Zheng, 2023. "A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33133-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.