IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38040-4.html
   My bibliography  Save this article

Ultra-stretchable and biodegradable elastomers for soft, transient electronics

Author

Listed:
  • Won Bae Han

    (Korea University)

  • Gwan-Jin Ko

    (Korea University)

  • Kang-Gon Lee

    (Korea University)

  • Donghak Kim

    (Korea Institute of Science and Technology (KIST))

  • Joong Hoon Lee

    (Korea University)

  • Seung Min Yang

    (Korea University
    Hanwha Systems Co., Ltd.)

  • Dong-Je Kim

    (Korea University)

  • Jeong-Woong Shin

    (Korea University)

  • Tae-Min Jang

    (Korea University)

  • Sungkeun Han

    (Korea University)

  • Honglei Zhou

    (The Pennsylvania State University)

  • Heeseok Kang

    (Korea University)

  • Jun Hyeon Lim

    (Korea University)

  • Kaveti Rajaram

    (Korea University)

  • Huanyu Cheng

    (The Pennsylvania State University)

  • Yong-Doo Park

    (Korea University)

  • Soo Hyun Kim

    (Korea Institute of Science and Technology (KIST))

  • Suk-Won Hwang

    (Korea University
    Korea Institute of Science and Technology (KIST)
    Korea University)

Abstract

As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.

Suggested Citation

  • Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38040-4
    DOI: 10.1038/s41467-023-38040-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38040-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38040-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung-Kyun Kang & Rory K. J. Murphy & Suk-Won Hwang & Seung Min Lee & Daniel V. Harburg & Neil A. Krueger & Jiho Shin & Paul Gamble & Huanyu Cheng & Sooyoun Yu & Zhuangjian Liu & Jordan G. McCall & Ma, 2016. "Bioresorbable silicon electronic sensors for the brain," Nature, Nature, vol. 530(7588), pages 71-76, February.
    2. Shuo Chen & Lijie Sun & Xiaojun Zhou & Yifan Guo & Jianchun Song & Sihao Qian & Zenghe Liu & Qingbao Guan & Eric Meade Jeffries & Wenguang Liu & Yadong Wang & Chuanglong He & Zhengwei You, 2020. "Mechanically and biologically skin-like elastomers for bio-integrated electronics," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Michael Wehner & Ryan L. Truby & Daniel J. Fitzgerald & Bobak Mosadegh & George M. Whitesides & Jennifer A. Lewis & Robert J. Wood, 2016. "An integrated design and fabrication strategy for entirely soft, autonomous robots," Nature, Nature, vol. 536(7617), pages 451-455, August.
    4. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    5. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    6. Yeon Sik Choi & Yuan-Yu Hsueh & Jahyun Koo & Quansan Yang & Raudel Avila & Buwei Hu & Zhaoqian Xie & Geumbee Lee & Zheng Ning & Claire Liu & Yameng Xu & Young Joong Lee & Weikang Zhao & Jun Fang & Yuj, 2020. "Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    7. Baoyang Lu & Hyunwoo Yuk & Shaoting Lin & Nannan Jian & Kai Qu & Jingkun Xu & Xuanhe Zhao, 2019. "Pure PEDOT:PSS hydrogels," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    8. Bin Kong & Yun Chen & Rui Liu & Xi Liu & Changyong Liu & Zengwu Shao & Liming Xiong & Xianning Liu & Wei Sun & Shengli Mi, 2020. "Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samantha M. McDonald & Quansan Yang & Yen-Hao Hsu & Shantanu P. Nikam & Ziying Hu & Zilu Wang & Darya Asheghali & Tiffany Yen & Andrey V. Dobrynin & John A. Rogers & Matthew L. Becker, 2023. "Resorbable barrier polymers for flexible bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jian Lv & Gurunathan Thangavel & Yangyang Xin & Dace Gao & Wei Church Poh & Shaohua Chen & Pooi See Lee, 2023. "Printed sustainable elastomeric conductor for soft electronics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Samantha M. McDonald & Quansan Yang & Yen-Hao Hsu & Shantanu P. Nikam & Ziying Hu & Zilu Wang & Darya Asheghali & Tiffany Yen & Andrey V. Dobrynin & John A. Rogers & Matthew L. Becker, 2023. "Resorbable barrier polymers for flexible bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    12. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Shibo Zou & Sergio Picella & Jelle Vries & Vera G. Kortman & Aimée Sakes & Johannes T. B. Overvelde, 2024. "A retrofit sensing strategy for soft fluidic robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38040-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.