IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v536y2016i7617d10.1038_nature19100.html
   My bibliography  Save this article

An integrated design and fabrication strategy for entirely soft, autonomous robots

Author

Listed:
  • Michael Wehner

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Ryan L. Truby

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Daniel J. Fitzgerald

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Bobak Mosadegh

    (Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine and New York Presbyterian Hospital
    Weill Cornell Medicine)

  • George M. Whitesides

    (Wyss Institute for Biologically Inspired Engineering, Harvard University
    Harvard University)

  • Jennifer A. Lewis

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Robert J. Wood

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University)

Abstract

An untethered, entirely soft robot is designed to operate autonomously by combining microfluidic logic and hydrogen peroxide as an on-board fuel supply.

Suggested Citation

  • Michael Wehner & Ryan L. Truby & Daniel J. Fitzgerald & Bobak Mosadegh & George M. Whitesides & Jennifer A. Lewis & Robert J. Wood, 2016. "An integrated design and fabrication strategy for entirely soft, autonomous robots," Nature, Nature, vol. 536(7617), pages 451-455, August.
  • Handle: RePEc:nat:nature:v:536:y:2016:i:7617:d:10.1038_nature19100
    DOI: 10.1038/nature19100
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19100
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Hayato Saigo & Makoto Naruse & Kazuya Okamura & Hirokazu Hori & Izumi Ojima, 2019. "Analysis of Soft Robotics Based on the Concept of Category of Mobility," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    4. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Sajjad Rahmani Dabbagh & Misagh Rezapour Sarabi & Mehmet Tugrul Birtek & Siamak Seyfi & Metin Sitti & Savas Tasoglu, 2022. "3D-printed microrobots from design to translation," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    9. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Yunjiang Wang & Xinben Hu & Luhang Cui & Xuan Xiao & Keji Yang & Yongjian Zhu & Haoran Jin, 2024. "Bioinspired handheld time-share driven robot with expandable DoFs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Wei Tang & Yiding Zhong & Huxiu Xu & Kecheng Qin & Xinyu Guo & Yu Hu & Pingan Zhu & Yang Qu & Dong Yan & Zhaoyang Li & Zhongdong Jiao & Xujun Fan & Huayong Yang & Jun Zou, 2023. "Self-protection soft fluidic robots with rapid large-area self-healing capabilities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Peng Huang & Wenjun Ye & Yawu Wang, 2020. "Dynamic modeling of dielectric elastomer actuator with conical shape," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    15. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Dong Wang & Baowen Zhao & Xinlei Li & Le Dong & Mengjie Zhang & Jiang Zou & Guoying Gu, 2023. "Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Shahram Janbaz & Corentin Coulais, 2024. "Diffusive kinks turn kirigami into machines," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Yin Zhang & Wang Zhang & Pan Gao & Xiaoqing Zhong & Wei Pu, 2022. "Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Shibo Zou & Sergio Picella & Jelle Vries & Vera G. Kortman & Aimée Sakes & Johannes T. B. Overvelde, 2024. "A retrofit sensing strategy for soft fluidic robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    21. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    22. Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    23. Wenbo Liu & Youning Duo & Jiaqi Liu & Feiyang Yuan & Lei Li & Luchen Li & Gang Wang & Bohan Chen & Siqi Wang & Hui Yang & Yuchen Liu & Yanru Mo & Yun Wang & Bin Fang & Fuchun Sun & Xilun Ding & Chi Zh, 2022. "Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    24. Joan Torrent-Sellens & Ana Isabel Jiménez-Zarco & Francesc Saigí-Rubió, 2021. "Do People Trust in Robot-Assisted Surgery? Evidence from Europe," IJERPH, MDPI, vol. 18(23), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:536:y:2016:i:7617:d:10.1038_nature19100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.