IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26666-1.html
   My bibliography  Save this article

Forest defoliator outbreaks alter nutrient cycling in northern waters

Author

Listed:
  • Samuel G. Woodman

    (Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge)

  • Sacha Khoury

    (Forest Ecology and Conservation Group, University of Cambridge Conservation Research Institute, University of Cambridge)

  • Ronald E. Fournier

    (Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre)

  • Erik J. S. Emilson

    (Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre)

  • John M. Gunn

    (Cooperative Freshwater Ecology Unit, Vale Living with Lakes Centre, Laurentian University)

  • James A. Rusak

    (Dorset Environmental Science Centre, Ontario Ministry of the Environment, Conservation and Parks)

  • Andrew J. Tanentzap

    (Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge)

Abstract

Insect defoliators alter biogeochemical cycles from land into receiving waters by consuming terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) concentrations in lake waters when defoliators covered entire catchments and reduced leaf area. DOC reductions reached 32% when deciduous stands dominated. Within-year changes in DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of 266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661 km2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeochemical cycles in forest catchments of this region.

Suggested Citation

  • Samuel G. Woodman & Sacha Khoury & Ronald E. Fournier & Erik J. S. Emilson & John M. Gunn & James A. Rusak & Andrew J. Tanentzap, 2021. "Forest defoliator outbreaks alter nutrient cycling in northern waters," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26666-1
    DOI: 10.1038/s41467-021-26666-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26666-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26666-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Karlsson & Pär Byström & Jenny Ask & Per Ask & Lennart Persson & Mats Jansson, 2009. "Light limitation of nutrient-poor lake ecosystems," Nature, Nature, vol. 460(7254), pages 506-509, July.
    2. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    3. Donald T. Monteith & John L. Stoddard & Christopher D. Evans & Heleen A. de Wit & Martin Forsius & Tore Høgåsen & Anders Wilander & Brit Lisa Skjelkvåle & Dean S. Jeffries & Jussi Vuorenmaa & Bill Kel, 2007. "Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry," Nature, Nature, vol. 450(7169), pages 537-540, November.
    4. Kristin M. Mikkelson & Eric R. V. Dickenson & Reed M. Maxwell & John E. McCray & Jonathan O. Sharp, 2013. "Water-quality impacts from climate-induced forest die-off," Nature Climate Change, Nature, vol. 3(3), pages 218-222, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    2. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    3. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    4. Petri P. Kärenlampi, 2021. "Capital Return Rate and Carbon Storage on Forest Estates of Three Boreal Tree Species," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    5. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    6. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Fugeray-Scarbel, Aline & Irz, Xavier & Lemarié, Stéphane, 2023. "Innovation in forest tree genetics: A comparative economic analysis in the European context," Forest Policy and Economics, Elsevier, vol. 155(C).
    8. C Emi Fergus & Andrew O Finley & Patricia A Soranno & Tyler Wagner, 2016. "Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.
    9. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    10. Winkel, Georg & Lovrić, Marko & Muys, Bart & Katila, Pia & Lundhede, Thomas & Pecurul, Mireia & Pettenella, Davide & Pipart, Nathalie & Plieninger, Tobias & Prokofieva, Irina & Parra, Constanza & Pülz, 2022. "Governing Europe's forests for multiple ecosystem services: Opportunities, challenges, and policy options," Forest Policy and Economics, Elsevier, vol. 145(C).
    11. Brèteau-Amores, Sandrine & Yousefpour, Rasoul & Hanewinkel, Marc & Fortin, Mathieu, 2023. "Forest adaptation strategies to reconcile timber production and carbon sequestration objectives under multiple risks of extreme drought and windstorm events," Ecological Economics, Elsevier, vol. 212(C).
    12. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).
    13. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    14. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    15. Jutras, Marie-France & Nasr, Mina & Castonguay, Mark & Pit, Christopher & Pomeroy, Joseph H. & Smith, Todd P. & Zhang, Cheng-fu & Ritchie, Charles D. & Meng, Fan-Rui & Clair, Thomas A. & Arp, Paul A., 2011. "Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model," Ecological Modelling, Elsevier, vol. 222(14), pages 2291-2313.
    16. Michelle Palmer & Norman Yan & Keith Somers, 2014. "Climate change drives coherent trends in physics and oxygen content in North American lakes," Climatic Change, Springer, vol. 124(1), pages 285-299, May.
    17. Gesa Weyhenmeyer & Roger Müller & Maria Norman & Lars Tranvik, 2016. "Sensitivity of freshwaters to browning in response to future climate change," Climatic Change, Springer, vol. 134(1), pages 225-239, January.
    18. Blattert, Clemens & Lemm, Renato & Thürig, Esther & Stadelmann, Golo & Brändli, Urs-Beat & Temperli, Christian, 2020. "Long-term impacts of increased timber harvests on ecosystem services and biodiversity: A scenario study based on national forest inventory data," Ecosystem Services, Elsevier, vol. 45(C).
    19. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Xiaoni You & Xiangying Li & Mika Sillanpää & Rong Wang & Chengyong Wu & Qiangqiang Xu, 2022. "Export of Dissolved Organic Carbon from the Source Region of Yangtze River in the Tibetan Plateau," Sustainability, MDPI, vol. 14(4), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26666-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.