IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v134y2016i1p225-239.html
   My bibliography  Save this article

Sensitivity of freshwaters to browning in response to future climate change

Author

Listed:
  • Gesa Weyhenmeyer
  • Roger Müller
  • Maria Norman
  • Lars Tranvik

Abstract

Many boreal waters are currently becoming browner with effects on biodiversity, fish production, biogeochemical processes and drinking water quality. The question arises whether and at which speed this browning will continue under future climate change. To answer the question we predicted the absorbance (a 420 ) in 6347 lakes and streams of the boreal region under future climate change. For the prediction we modified a numerical model for a 420 spatial variation which we tested on a temporal scale by simulating a 420 inter-annual variation in 48 out of the 6347 Swedish waters. We observed that inter-annual a 420 variation is strongly driven by precipitation that controls the water flushing through the landscape. Using the predicted worst case climate scenario for Sweden until 2030, i.e., a 32 % precipitation increase, and assuming a 10 % increase in imports of colored substances into headwaters but no change in land-cover, we predict that a 420 in the 6347 lakes and streams will, in the worst case, increase by factors between 1.1 and 7.6 with a median of 1.3. This increase implies that a 420 will rise from the present 0.1–86 m −1 (median: 7.3 m −1 ) in the 6347 waters to 0.1–154 m −1 (median: 10.1 m −1 ), which can cause problems for the preparation of drinking water in a variety of waters. Our model approach clearly demonstrates that a homogenous precipitation increase results in very heterogeneous a 420 changes, where lakes with a long-term mean landscape water retention time between 1 and 3 years are particularly vulnerable to climate change induced browning. Since these lake types are quite often used as drinking water resources, preparedness is needed for such waters. Copyright The Author(s) 2016

Suggested Citation

  • Gesa Weyhenmeyer & Roger Müller & Maria Norman & Lars Tranvik, 2016. "Sensitivity of freshwaters to browning in response to future climate change," Climatic Change, Springer, vol. 134(1), pages 225-239, January.
  • Handle: RePEc:spr:climat:v:134:y:2016:i:1:p:225-239
    DOI: 10.1007/s10584-015-1514-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1514-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1514-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nigel Roulet & Tim R. Moore, 2006. "Browning the waters," Nature, Nature, vol. 444(7117), pages 283-284, November.
    2. Donald T. Monteith & John L. Stoddard & Christopher D. Evans & Heleen A. de Wit & Martin Forsius & Tore Høgåsen & Anders Wilander & Brit Lisa Skjelkvåle & Dean S. Jeffries & Jussi Vuorenmaa & Bill Kel, 2007. "Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry," Nature, Nature, vol. 450(7169), pages 537-540, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyungseok Park & Sewoong Chung & Eunju Cho & Kyoungjae Lim, 2018. "Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region," Climatic Change, Springer, vol. 151(3), pages 365-378, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jutras, Marie-France & Nasr, Mina & Castonguay, Mark & Pit, Christopher & Pomeroy, Joseph H. & Smith, Todd P. & Zhang, Cheng-fu & Ritchie, Charles D. & Meng, Fan-Rui & Clair, Thomas A. & Arp, Paul A., 2011. "Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model," Ecological Modelling, Elsevier, vol. 222(14), pages 2291-2313.
    2. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    3. Michelle Palmer & Norman Yan & Keith Somers, 2014. "Climate change drives coherent trends in physics and oxygen content in North American lakes," Climatic Change, Springer, vol. 124(1), pages 285-299, May.
    4. Xiaoni You & Xiangying Li & Mika Sillanpää & Rong Wang & Chengyong Wu & Qiangqiang Xu, 2022. "Export of Dissolved Organic Carbon from the Source Region of Yangtze River in the Tibetan Plateau," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    5. Samuel G. Woodman & Sacha Khoury & Ronald E. Fournier & Erik J. S. Emilson & John M. Gunn & James A. Rusak & Andrew J. Tanentzap, 2021. "Forest defoliator outbreaks alter nutrient cycling in northern waters," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Yang, Yuangen & He, Zhenli & Wang, Yanbo & Fan, Jinghua & Liang, Zhanbei & Stoffella, Peter J., 2013. "Dissolved organic matter in relation to nutrients (N and P) and heavy metals in surface runoff water as affected by temporal variation and land uses – A case study from Indian River Area, south Florid," Agricultural Water Management, Elsevier, vol. 118(C), pages 38-49.
    7. Ianis Delpla & Donald T. Monteith & Chris Freeman & Joris Haftka & Joop Hermens & Timothy G. Jones & Estelle Baurès & Aude-Valérie Jung & Olivier Thomas, 2014. "A Decision Support System for Drinking Water Production Integrating Health Risks Assessment," IJERPH, MDPI, vol. 11(7), pages 1-22, July.
    8. Kevin C. Rose & Britta Bierwagen & Scott D. Bridgham & Daren M. Carlisle & Charles P. Hawkins & N. LeRoy Poff & Jordan S. Read & Jason R. Rohr & Jasmine E. Saros & Craig E. Williamson, 2023. "Indicators of the effects of climate change on freshwater ecosystems," Climatic Change, Springer, vol. 176(3), pages 1-20, March.
    9. Ziqiang Liu & Jiayue Yang & Jiaen Zhang & Huimin Xiang & Hui Wei, 2019. "A Bibliometric Analysis of Research on Acid Rain," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    10. Grunewald, Karsten & Bastian, Olaf, 2015. "Ecosystem assessment and management as key tools for sustainable landscape development: A case study of the Ore Mountains region in Central Europe," Ecological Modelling, Elsevier, vol. 295(C), pages 151-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:134:y:2016:i:1:p:225-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.