IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26314-8.html
   My bibliography  Save this article

Memristor-based biomimetic compound eye for real-time collision detection

Author

Listed:
  • Yan Wang

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University
    Hefei Innovation Research Institute, School of Microelectronics, Beihang University)

  • Yue Gong

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Shenming Huang

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Xuechao Xing

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Ziyu Lv

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Junjie Wang

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Jia-Qin Yang

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Guohua Zhang

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

  • Ye Zhou

    (Institute for Advanced Study, Shenzhen University)

  • Su-Ting Han

    (Institute of Microscale optoelectronics and College of Optoelectronic Engineering, Shenzhen University)

Abstract

The lobula giant movement detector (LGMD) is the movement-sensitive, wide-field visual neuron positioned in the third visual neuropile of lobula. LGMD neuron can anticipate collision and trigger avoidance efficiently owing to the earlier occurring firing peak before collision. Vision chips inspired by the LGMD have been successfully implemented in very-large-scale-integration (VLSI) system. However, transistor-based chips and single devices to simulate LGMD neurons make them bulky, energy-inefficient and complicated. The devices with relatively compact structure and simple operation mode to mimic the escape response of LGMD neuron have not been realized yet. Here, the artificial LGMD visual neuron is implemented using light-mediated threshold switching memristor. The non-monotonic response to light flow field originated from the formation and break of Ag conductive filaments is analogue to the escape response of LGMD neuron. Furthermore, robot navigation with obstacle avoidance capability and biomimetic compound eyes with wide field-of-view (FoV) detection capability are demonstrated.

Suggested Citation

  • Yan Wang & Yue Gong & Shenming Huang & Xuechao Xing & Ziyu Lv & Junjie Wang & Jia-Qin Yang & Guohua Zhang & Ye Zhou & Su-Ting Han, 2021. "Memristor-based biomimetic compound eye for real-time collision detection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26314-8
    DOI: 10.1038/s41467-021-26314-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26314-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26314-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Du & Fuxi Cai & Mohammed A. Zidan & Wen Ma & Seung Hwan Lee & Wei D. Lu, 2017. "Reservoir computing using dynamic memristors for temporal information processing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Fabrizio Gabbiani & Holger G. Krapp & Christof Koch & Gilles Laurent, 2002. "Multiplicative computation in a visual neuron sensitive to looming," Nature, Nature, vol. 420(6913), pages 320-324, November.
    3. Tianda Fu & Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Zhongrui Wang & Ye Zhuo & David J. F. Walker & J. Joshua Yang & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Bioinspired bio-voltage memristors," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Wei Wang & Ming Wang & Elia Ambrosi & Alessandro Bricalli & Mario Laudato & Zhong Sun & Xiaodong Chen & Daniele Ielmini, 2019. "Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Yinan Huang & Xue Gong & Yancheng Meng & Zhongwu Wang & Xiaosong Chen & Jie Li & Deyang Ji & Zhongming Wei & Liqiang Li & Wenping Hu, 2021. "Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Wen Sun & Bin Gao & Miaofang Chi & Qiangfei Xia & J. Joshua Yang & He Qian & Huaqiang Wu, 2019. "Understanding memristive switching via in situ characterization and device modeling," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    7. Damien Hanlon & Claudia Backes & Evie Doherty & Clotilde S. Cucinotta & Nina C. Berner & Conor Boland & Kangho Lee & Andrew Harvey & Peter Lynch & Zahra Gholamvand & Saifeng Zhang & Kangpeng Wang & Gl, 2015. "Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Chengpeng Jiang & Honghuan Xu & Lu Yang & Jiaqi Liu & Yue Li & Kuniharu Takei & Wentao Xu, 2024. "Neuromorphic antennal sensory system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xu Luo & Chen Chen & Zixi He & Min Wang & Keyuan Pan & Xuemei Dong & Zifan Li & Bin Liu & Zicheng Zhang & Yueyue Wu & Chaoyi Ban & Rong Chen & Dengfeng Zhang & Kaili Wang & Qiye Wang & Junyue Li & Gan, 2024. "A bionic self-driven retinomorphic eye with ionogel photosynaptic retina," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konlechner, Roland & Allagui, Anis & Antonov, Vladimir N. & Yudin, Dmitry, 2023. "A superstatistics approach to the modelling of memristor current–voltage responses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    2. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jongmin Lee & Bum Ho Jeong & Eswaran Kamaraj & Dohyung Kim & Hakjun Kim & Sanghyuk Park & Hui Joon Park, 2023. "Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Ying Zhang & Ge-Qi Mao & Xiaolong Zhao & Yu Li & Meiyun Zhang & Zuheng Wu & Wei Wu & Huajun Sun & Yizhong Guo & Lihua Wang & Xumeng Zhang & Qi Liu & Hangbing Lv & Kan-Hao Xue & Guangwei Xu & Xiangshui, 2021. "Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Yajiao Tang & Junkai Ji & Yulin Zhu & Shangce Gao & Zheng Tang & Yuki Todo, 2019. "A Differential Evolution-Oriented Pruning Neural Network Model for Bankruptcy Prediction," Complexity, Hindawi, vol. 2019, pages 1-21, August.
    12. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Yang, J. & Primo, E. & Aleja, D. & Criado, R. & Boccaletti, S. & Alfaro-Bittner, K., 2022. "Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Pengshan Xie & Yunchao Xu & Jingwen Wang & Dengji Li & Yuxuan Zhang & Zixin Zeng & Boxiang Gao & Quan Quan & Bowen Li & You Meng & Weijun Wang & Yezhan Li & Yan Yan & Yi Shen & Jia Sun & Johnny C. Ho, 2024. "Birdlike broadband neuromorphic visual sensor arrays for fusion imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Chungryeol Lee & Changhyeon Lee & Seungmin Lee & Junhwan Choi & Hocheon Yoo & Sung Gap Im, 2023. "A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Sergi Bermúdez i Badia & Ulysses Bernardet & Paul F M J Verschure, 2010. "Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-15, March.
    20. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26314-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.