IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics096007792401511x.html
   My bibliography  Save this article

Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar

Author

Listed:
  • Koryazhkina, M.N.
  • Lebedeva, A.V.
  • Pakhomova, D.D.
  • Antonov, I.N.
  • Razin, V.V.
  • Budylina, E.D.
  • Belov, A.I.
  • Mikhaylov, A.N.
  • Konakov, A.A.

Abstract

The influence of the epileptiform neuronal activity on the response of a CMOS-integrated ZrO2(Y)-based memristive crossbar and its conductivity was studied. Epileptiform neuronal activity was obtained in vitro in the hippocampal slices of laboratory mice using 4-aminopyridine experimental model. Synaptic plasticity of the memristive crossbar induced by epileptiform neuronal activity pulses was detected. Qualitatively, the results obtained in the case of normal (without pathologies) and epileptiform neuronal activity with and without noise coincide. For quantitative analysis, the value of the relative change in synaptic weight has been calculated for such important biological mechanisms of synapses as paired-pulse facilitation/depression, post-tetanic potentiation/depression, and long-term potentiation/depression. It has been shown that average value of the relative change in synaptic weight and its scatter are smaller mainly in the case of epileptiform neuronal activity pulses. An effect of the influence of noise included in the neuronal activity was found, which consists in the fact that the current response of the memristive crossbar is smaller in the presence of noise. The results of this study can be used in the development of new generation hardware-implemented computing devices with high performance and energy efficiency for the tasks of restorative medicine and robotics. In particular, using these results, neurohybrid devices can be developed for processing epileptiform activity in real time and for its suppression.

Suggested Citation

  • Koryazhkina, M.N. & Lebedeva, A.V. & Pakhomova, D.D. & Antonov, I.N. & Razin, V.V. & Budylina, E.D. & Belov, A.I. & Mikhaylov, A.N. & Konakov, A.A., 2025. "Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401511x
    DOI: 10.1016/j.chaos.2024.115959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792401511X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingyi Rao & Hao Tang & Jiangbin Wu & Wenhao Song & Max Zhang & Wenbo Yin & Ye Zhuo & Fatemeh Kiani & Benjamin Chen & Xiangqi Jiang & Hefei Liu & Hung-Yu Chen & Rivu Midya & Fan Ye & Hao Jiang & Zhong, 2023. "Thousands of conductance levels in memristors integrated on CMOS," Nature, Nature, vol. 615(7954), pages 823-829, March.
    2. G. Augello & D. Valenti & A. L. Pankratov & B. Spagnolo, 2009. "Lifetime of the superconductive state in short and long Josephson junctions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 145-151, July.
    3. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Tianda Fu & Xiaomeng Liu & Shuai Fu & Trevor Woodard & Hongyan Gao & Derek R. Lovley & Jun Yao, 2021. "Self-sustained green neuromorphic interfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Tianda Fu & Xiaomeng Liu & Hongyan Gao & Joy E. Ward & Xiaorong Liu & Bing Yin & Zhongrui Wang & Ye Zhuo & David J. F. Walker & J. Joshua Yang & Jianhan Chen & Derek R. Lovley & Jun Yao, 2020. "Bioinspired bio-voltage memristors," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Gerasimova, S.A. & Lebedeva, A.V. & Fedulina, A. & Koryazhkina, M. & Belov, A.I. & Mishchenko, M.A. & Matveeva, M. & Guseinov, D. & Mikhaylov, A.N. & Kazantsev, V.B. & Pisarchik, A.N., 2021. "A neurohybrid memristive system for adaptive stimulation of hippocampus," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Zhengwu Liu & Jianshi Tang & Bin Gao & Peng Yao & Xinyi Li & Dingkun Liu & Ying Zhou & He Qian & Bo Hong & Huaqiang Wu, 2020. "Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    12. E. L. Pankratov & B. Spagnolo, 2005. "Optimization of impurity profile for p-n-junction in heterostructures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 15-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuklyaevskikh, Georgii A. & Shvetsov, Boris S. & Emelyanov, Andrey V. & Kulagin, Vsevolod A. & Rylkov, Vladimir V. & Demin, Vyacheslav A., 2025. "Plasticity of parylene memristors: Compact phenomenological model and synaptic properties," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    2. Maldonado, D. & Cantudo, A. & Guseinov, D.V. & Koryazhkina, M.N. & Okulich, E.V. & Tetelbaum, D.I. & Bartev, N.O. & Danchenko, N.G. & Pikar, V.A. & Teterevkov, A.V. & Jiménez-Molinos, F. & Mikhaylov, , 2025. "A statistical and modeling study on the effects of radiation on Au/Ta/ZrO2(Y)/Pt/Ti memristive devices," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    3. Park, Jihee & Jang, Heeseong & Byun, Yongjin & Na, Hyesung & Ji, Hyeonseung & Kim, Sungjun, 2025. "Improved memory and synaptic device performance of HfO2-based multilayer memristor by inserting oxygen gradient TiOx layer," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    4. Koo, Ryun-Han & Shin, Wonjun & Lee, Sung-Tae & Kwon, Daewoong & Lee, Jong-Ho, 2025. "Stochastic behavior of random telegraph noise in ferroelectric devices: Impact of downscaling and mitigation strategies for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    5. Lee, Geun Ho & Kim, Tae-Hyeon & Song, Min Suk & Park, Jinwoo & Kim, Sungjoon & Hong, Kyungho & Kim, Yoon & Park, Byung-Gook & Kim, Hyungjin, 2022. "Effect of weight overlap region on neuromorphic system with memristive synaptic devices," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Setoudeh, Farbod & Dousti, Massoud, 2022. "Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    16. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    17. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Yonkeu, R. Mbakob, 2023. "Stochastic bifurcations induced by Lévy noise in a fractional trirhythmic van der Pol system," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. Guo, Yongfeng & Ding, Jiaxin & Mi, Lina, 2024. "Statistical complexity and stochastic resonance of an underdamped bistable periodic potential system excited by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    20. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s096007792401511x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.