IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics096007792200025x.html
   My bibliography  Save this article

Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator

Author

Listed:
  • Setoudeh, Farbod
  • Dousti, Massoud

Abstract

Undoubtedly, the discovery of memristive elements has revolutionized electronic industry so that it is possible to take advantage of the unique properties of these elements in a variety of applications. Moreover, meminductors has received much attention in recent years due to its special features. In this paper, a new meminductor-based structure is presented using a memristor. Furthermore, this paper proposes a high-frequency flux-controlled floating meminductor emulator, which uses an analog multiplier. The proposed meminductor model can be adjusted in both incremental and subtractive settings and performs well up to 200 Hz. Finally, the proposed meminductor emulator is used for designing and implementing a meminductor-based Colpitts oscillator. The measurement results of the proposed oscillator are compared with the simulation results. The proposed circuit can be easily applied in an undergraduate laboratory to show the use of meminductors in generating sinusoidal oscillations.

Suggested Citation

  • Setoudeh, Farbod & Dousti, Massoud, 2022. "Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s096007792200025x
    DOI: 10.1016/j.chaos.2022.111814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200025X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Spagnolo & A. Dubkov & N. Agudov, 2004. "Enhancement of stability in randomly switching potential with metastable state," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 273-281, August.
    2. Vinod K. Sangwan & Hong-Sub Lee & Hadallia Bergeron & Itamar Balla & Megan E. Beck & Kan-Sheng Chen & Mark C. Hersam, 2018. "Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide," Nature, Nature, vol. 554(7693), pages 500-504, February.
    3. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    4. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    7. Zhevnenko, D. & Meshchaninov, F. & Kozhevnikov, V. & Shamin, E. & Belov, A. & Gerasimova, S. & Guseinov, D. & Mikhaylov, A. & Gornev, E., 2021. "Simulation of memristor switching time series in response to spike-like signal," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. A. Asamitsu & Y. Tomioka & H. Kuwahara & Y. Tokura, 1997. "Current switching of resistive states in magnetoresistive manganites," Nature, Nature, vol. 388(6637), pages 50-52, July.
    9. E. L. Pankratov & B. Spagnolo, 2005. "Optimization of impurity profile for p-n-junction in heterostructures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 15-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setoudeh, F. & Sedigh, A. Khaki, 2021. "Nonlinear analysis and minimum L2-norm control in memcapacitor-based hyperchaotic system via online particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Alsuwian, Turki & Kousar, Farhana & Rasheed, Umbreen & Imran, Muhammad & Hussain, Fayyaz & Arif Khalil, R.M. & Algadi, Hassan & Batool, Najaf & Khera, Ejaz Ahmad & Kiran, Saira & Ashiq, Muhammad Naeem, 2021. "First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2021. "Double memristors oscillator with hidden stacked attractors and its multi-transient and multistability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    14. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Lee, Geun Ho & Kim, Tae-Hyeon & Song, Min Suk & Park, Jinwoo & Kim, Sungjoon & Hong, Kyungho & Kim, Yoon & Park, Byung-Gook & Kim, Hyungjin, 2022. "Effect of weight overlap region on neuromorphic system with memristive synaptic devices," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    20. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s096007792200025x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.