IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014085.html
   My bibliography  Save this article

Stochastic behavior of random telegraph noise in ferroelectric devices: Impact of downscaling and mitigation strategies for neuromorphic applications

Author

Listed:
  • Koo, Ryun-Han
  • Shin, Wonjun
  • Lee, Sung-Tae
  • Kwon, Daewoong
  • Lee, Jong-Ho

Abstract

This study investigates the stochastic behavior of random telegraph noise (RTN) in ferroelectric tunnel junctions (FTJs) considering the downscaling effect and its implications for neuromorphic systems. Through low-frequency noise spectroscopy and DC current fluctuation measurements of fabricated FTJs with varying top electrode areas, we quantified the stochasticity of the tunneling current as a function of applied voltage and device area. Our results indicate a significant increase in RTN-related stochasticity with decreasing FTJ area, resulting in higher RTN amplitude and a greater number of devices exhibiting RTN. Analysis of the capture and emission time constants of RTN shows that RTN arises from the interaction between the metal top electrode and a dominant trap site, located 4 nm deep from the top electrode, with a trap energy 1.8 eV below the conduction band of the HZO layer. To assess the impact on neuromorphic systems, we performed system-level simulations incorporating the measured device non-idealities (nonlinearity, limited dynamic range) and stochasticity (1/f noise and RTN), and demonstrated that RTN can severely degrade system accuracy as device size decreases. To mitigate this problem, we proposed a limited dynamic range scheme that confines device operation to RTN-safe conductance levels, effectively minimizing accuracy degradation. This study clarifies the origin of the stochastic behavior of RTN in FTJs and also provides system-level solutions for high-density neuromorphic hardware systems affected by RTN.

Suggested Citation

  • Koo, Ryun-Han & Shin, Wonjun & Lee, Sung-Tae & Kwon, Daewoong & Lee, Jong-Ho, 2025. "Stochastic behavior of random telegraph noise in ferroelectric devices: Impact of downscaling and mitigation strategies for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014085
    DOI: 10.1016/j.chaos.2024.115856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Garcia & Manuel Bibes, 2014. "Ferroelectric tunnel junctions for information storage and processing," Nature Communications, Nature, vol. 5(1), pages 1-12, September.
    2. Koo, Ryun-Han & Shin, Wonjun & Jung, Gyuweon & Kwon, Dongseok & Kim, Jae-Joon & Kwon, Daewoong & Lee, Jong-Ho, 2024. "Stochasticity in ferroelectric memory devices with different bottom electrode crystallinity," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Stavrinides, Stavros G. & Hanias, Michael P. & Gonzalez, Mireia B. & Campabadal, Francesca & Contoyiannis, Yiannis & Potirakis, Stelios M. & Al Chawa, Mohamad Moner & de Benito, Carol & Tetzlaff, Rona, 2022. "On the chaotic nature of random telegraph noise in unipolar RRAM memristor devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Filatov, D.O. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Shenina, M.E. & Antonov, I.N. & Gorshkov, O.N. & Agudov, N.V. & Carollo, A. & Valenti, D. & Spagnolo, B., 2022. "Effect of internal noise on the relaxation time of an yttria stabilized zirconia-based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Maldonado, D. & Aguilera-Pedregosa, C. & Vinuesa, G. & García, H. & Dueñas, S. & Castán, H. & Aldana, S. & González, M.B. & Moreno, E. & Jiménez-Molinos, F. & Campabadal, F. & Roldán, J.B., 2022. "An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Vasileiadis, Nikolaos & Loukas, Panagiotis & Karakolis, Panagiotis & Ioannou-Sougleridis, Vassilios & Normand, Pascal & Ntinas, Vasileios & Fyrigos, Iosif-Angelos & Karafyllidis, Ioannis & Sirakoulis,, 2021. "Multi-level resistance switching and random telegraph noise analysis of nitride based memristors," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Parit, Aditya Kuber & Yadav, Mani Shankar & Gupta, Avinash Kumar & Mikhaylov, Alexey & Rawat, Brajesh, 2021. "Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. E. L. Pankratov & B. Spagnolo, 2005. "Optimization of impurity profile for p-n-junction in heterostructures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 15-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo, Ryun-Han & Shin, Wonjun & Jung, Gyuweon & Kwon, Dongseok & Kim, Jae-Joon & Kwon, Daewoong & Lee, Jong-Ho, 2024. "Stochasticity in ferroelectric memory devices with different bottom electrode crystallinity," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Yuklyaevskikh, Georgii A. & Shvetsov, Boris S. & Emelyanov, Andrey V. & Kulagin, Vsevolod A. & Rylkov, Vladimir V. & Demin, Vyacheslav A., 2025. "Plasticity of parylene memristors: Compact phenomenological model and synaptic properties," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
    3. Koryazhkina, M.N. & Lebedeva, A.V. & Pakhomova, D.D. & Antonov, I.N. & Razin, V.V. & Budylina, E.D. & Belov, A.I. & Mikhaylov, A.N. & Konakov, A.A., 2025. "Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    4. Maldonado, D. & Cantudo, A. & Guseinov, D.V. & Koryazhkina, M.N. & Okulich, E.V. & Tetelbaum, D.I. & Bartev, N.O. & Danchenko, N.G. & Pikar, V.A. & Teterevkov, A.V. & Jiménez-Molinos, F. & Mikhaylov, , 2025. "A statistical and modeling study on the effects of radiation on Au/Ta/ZrO2(Y)/Pt/Ti memristive devices," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    5. Park, Jihee & Jang, Heeseong & Byun, Yongjin & Na, Hyesung & Ji, Hyeonseung & Kim, Sungjun, 2025. "Improved memory and synaptic device performance of HfO2-based multilayer memristor by inserting oxygen gradient TiOx layer," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    6. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Taheri, Alireza Ghomi & Setoudeh, Farbod & Tavakoli, Mohammad Bagher & Feizi, Esmaeil, 2022. "Nonlinear analysis of memcapacitor-based hyperchaotic oscillator by using adaptive multi-step differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Setoudeh, Farbod & Dousti, Massoud, 2022. "Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    15. Lee, Geun Ho & Kim, Tae-Hyeon & Song, Min Suk & Park, Jinwoo & Kim, Sungjoon & Hong, Kyungho & Kim, Yoon & Park, Byung-Gook & Kim, Hyungjin, 2022. "Effect of weight overlap region on neuromorphic system with memristive synaptic devices," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Cui, Kaiyan & Song, Zhanjie & Zhang, Shuo, 2022. "Stability of neutral-type neural network with Lévy noise and mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    18. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.