IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-02337-y.html
   My bibliography  Save this article

Reservoir computing using dynamic memristors for temporal information processing

Author

Listed:
  • Chao Du

    (University of Michigan)

  • Fuxi Cai

    (University of Michigan)

  • Mohammed A. Zidan

    (University of Michigan)

  • Wen Ma

    (University of Michigan)

  • Seung Hwan Lee

    (University of Michigan)

  • Wei D. Lu

    (University of Michigan)

Abstract

Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function.

Suggested Citation

  • Chao Du & Fuxi Cai & Mohammed A. Zidan & Wen Ma & Seung Hwan Lee & Wei D. Lu, 2017. "Reservoir computing using dynamic memristors for temporal information processing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02337-y
    DOI: 10.1038/s41467-017-02337-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02337-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02337-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanming Liu & He Tian & Fan Wu & Anhan Liu & Yihao Li & Hao Sun & Mario Lanza & Tian-Ling Ren, 2023. "Cellular automata imbedded memristor-based recirculated logic in-memory computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Dong, Shiyu & Zhu, Hong & Zhong, Shouming & Shi, Kaibo & Liu, Yajuan, 2021. "New study on fixed-time synchronization control of delayed inertial memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    4. Yang, J. & Primo, E. & Aleja, D. & Criado, R. & Boccaletti, S. & Alfaro-Bittner, K., 2022. "Implementing and morphing Boolean gates with adaptive synchronization: The case of spiking neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Ali Momeni & Romain Fleury, 2022. "Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yan Wang & Yue Gong & Shenming Huang & Xuechao Xing & Ziyu Lv & Junjie Wang & Jia-Qin Yang & Guohua Zhang & Ye Zhou & Su-Ting Han, 2021. "Memristor-based biomimetic compound eye for real-time collision detection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Jongmin Lee & Bum Ho Jeong & Eswaran Kamaraj & Dohyung Kim & Hakjun Kim & Sanghyuk Park & Hui Joon Park, 2023. "Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    21. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    22. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    23. Jaehyun Kang & Taeyoon Kim & Suman Hu & Jaewook Kim & Joon Young Kwak & Jongkil Park & Jong Keuk Park & Inho Kim & Suyoun Lee & Sangbum Kim & YeonJoo Jeong, 2022. "Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    24. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    25. Sanghyeon Choi & Jaeho Shin & Gwanyeong Park & Jung Sun Eo & Jingon Jang & J. Joshua Yang & Gunuk Wang, 2024. "3D-integrated multilayered physical reservoir array for learning and forecasting time-series information," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02337-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.