IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36722-7.html
   My bibliography  Save this article

Laser printed microelectronics

Author

Listed:
  • Liang Yang

    (Karlsruhe Institute of Technology (KIT)
    Karlsruhe Institute of Technology (KIT)
    University of Science and Technology of China (USTC))

  • Hongrong Hu

    (Karlsruhe Institute of Technology (KIT))

  • Alexander Scholz

    (Karlsruhe Institute of Technology (KIT))

  • Florian Feist

    (Karlsruhe Institute of Technology (KIT))

  • Gabriel Cadilha Marques

    (Karlsruhe Institute of Technology (KIT))

  • Steven Kraus

    (Karlsruhe Institute of Technology (KIT)
    Karlsruhe Institute of Technology (KIT))

  • Niklas Maximilian Bojanowski

    (Karlsruhe Institute of Technology (KIT))

  • Eva Blasco

    (Karlsruhe Institute of Technology (KIT)
    Ruprecht-Karls-Universität Heidelberg
    Ruprecht-Karls-Universität Heidelberg)

  • Christopher Barner-Kowollik

    (Karlsruhe Institute of Technology (KIT)
    Queensland University of Technology (QUT)
    Queensland University of Technology (QUT))

  • Jasmin Aghassi-Hagmann

    (Karlsruhe Institute of Technology (KIT))

  • Martin Wegener

    (Karlsruhe Institute of Technology (KIT)
    Karlsruhe Institute of Technology (KIT))

Abstract

Printed organic and inorganic electronics continue to be of large interest for sensors, bioelectronics, and security applications. Many printing techniques have been investigated, albeit often with typical minimum feature sizes in the tens of micrometer range and requiring post-processing procedures at elevated temperatures to enhance the performance of functional materials. Herein, we introduce laser printing with three different inks, for the semiconductor ZnO and the metals Pt and Ag, as a facile process for fabricating printed functional electronic devices with minimum feature sizes below 1 µm. The ZnO printing is based on laser-induced hydrothermal synthesis. Importantly, no sintering of any sort needs to be performed after laser printing for any of the three materials. To demonstrate the versatility of our approach, we show functional diodes, memristors, and a physically unclonable function based on a 6 × 6 memristor crossbar architecture. In addition, we realize functional transistors by combining laser printing and inkjet printing.

Suggested Citation

  • Liang Yang & Hongrong Hu & Alexander Scholz & Florian Feist & Gabriel Cadilha Marques & Steven Kraus & Niklas Maximilian Bojanowski & Eva Blasco & Christopher Barner-Kowollik & Jasmin Aghassi-Hagmann , 2023. "Laser printed microelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36722-7
    DOI: 10.1038/s41467-023-36722-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36722-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36722-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yifan Chen & Siu Fai Hung & Wing Ki Lo & Yang Chen & Yang Shen & Kim Kafenda & Jia Su & Kangwei Xia & Sen Yang, 2020. "A universal method for depositing patterned materials in situ," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Kalaivanan Loganathan & Hendrik Faber & Emre Yengel & Akmaral Seitkhan & Azamat Bakytbekov & Emre Yarali & Begimai Adilbekova & Afnan AlBatati & Yuanbao Lin & Zainab Felemban & Shuai Yang & Weiwei Li , 2022. "Rapid and up-scalable manufacturing of gigahertz nanogap diodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Alexander Scholz & Lukas Zimmermann & Ulrich Gengenbach & Liane Koker & Zehua Chen & Horst Hahn & Axel Sikora & Mehdi B. Tahoori & Jasmin Aghassi-Hagmann, 2020. "Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Wen Sun & Bin Gao & Miaofang Chi & Qiangfei Xia & J. Joshua Yang & He Qian & Huaqiang Wu, 2019. "Understanding memristive switching via in situ characterization and device modeling," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Wooik Jung & Yoon-Ho Jung & Peter V. Pikhitsa & Jicheng Feng & Younghwan Yang & Minkyung Kim & Hao-Yuan Tsai & Takuo Tanaka & Jooyeon Shin & Kwang-Yeong Kim & Hoseop Choi & Junsuk Rho & Mansoo Choi, 2021. "Three-dimensional nanoprinting via charged aerosol jets," Nature, Nature, vol. 592(7852), pages 54-59, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfang Zhang & Rong Tan & Yuxin Liu & Matteo Albino & Weinan Zhang & Molly M. Stevens & Felix F. Loeffler, 2024. "Printed smart devices for anti-counterfeiting allowing precise identification with household equipment," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Konlechner, Roland & Allagui, Anis & Antonov, Vladimir N. & Yudin, Dmitry, 2023. "A superstatistics approach to the modelling of memristor current–voltage responses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    3. Longfei Song & Juliette Cardoletti & Alfredo Blázquez Martínez & Andreja Benčan & Brigita Kmet & Stéphanie Girod & Emmanuel Defay & Sebastjan Glinšek, 2024. "Crystallization of piezoceramic films on glass via flash lamp annealing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Junfang Zhang & Rong Tan & Yuxin Liu & Matteo Albino & Weinan Zhang & Molly M. Stevens & Felix F. Loeffler, 2024. "Printed smart devices for anti-counterfeiting allowing precise identification with household equipment," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Seongheon Baek & Hyeong Woo Ban & Sanggyun Jeong & Seung Hwae Heo & Da Hwi Gu & Wooyong Choi & Seungjun Choo & Yae Eun Park & Jisu Yoo & Moon Kee Choi & Jiseok Lee & Jae Sung Son, 2022. "Generalised optical printing of photocurable metal chalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Weiwei Zhao & Hao Ni & Chengbo Ding & Leilei Liu & Qingfeng Fu & Feifei Lin & Feng Tian & Pin Yang & Shujuan Liu & Wenjun He & Xiaoming Wang & Wei Huang & Qiang Zhao, 2023. "2D Titanium carbide printed flexible ultrawideband monopole antenna for wireless communications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Bassem Tossoun & Di Liang & Stanley Cheung & Zhuoran Fang & Xia Sheng & John Paul Strachan & Raymond G. Beausoleil, 2024. "High-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Ying Zhang & Ge-Qi Mao & Xiaolong Zhao & Yu Li & Meiyun Zhang & Zuheng Wu & Wei Wu & Huajun Sun & Yizhong Guo & Lihua Wang & Xumeng Zhang & Qi Liu & Hangbing Lv & Kan-Hao Xue & Guangwei Xu & Xiangshui, 2021. "Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Yan Wang & Yue Gong & Shenming Huang & Xuechao Xing & Ziyu Lv & Junjie Wang & Jia-Qin Yang & Guohua Zhang & Ye Zhou & Su-Ting Han, 2021. "Memristor-based biomimetic compound eye for real-time collision detection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Mahata, Chandreswar & Kim, Sungjun, 2021. "Electrical and optical artificial synapses properties of TiN-nanoparticles incorporated HfAlO-alloy based memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36722-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.