IDEAS home Printed from https://ideas.repec.org/a/mgt/youmgt/v14y2016i4p359-384.html
   My bibliography  Save this article

Prospect Theory Based Portfolio Optimization Problem with Imprecise Forecasts

Author

Listed:
  • Massimiliano Kaucic

    (University of Trieste, Italy)

  • Roberto Daris

    (University of Trieste, Italy)

Abstract

In this paper we propose a novel interval optimization approach for portfolio selection when imprecise forecasts are available. We consider investors acting their choices according to the prospect theory, where scenarios are provided in the form of approximate numbers. The resulting constrained nonlinear interval optimization problem is converted into two nonlinear programming problems using a total order relation between intervals. Static and dynamic analysis of portfolios involving assets from the Croatian market illustrate the potential of the method with respect to the standard procedure.

Suggested Citation

  • Massimiliano Kaucic & Roberto Daris, 2016. "Prospect Theory Based Portfolio Optimization Problem with Imprecise Forecasts," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 14(4 (Winter), pages 359-384.
  • Handle: RePEc:mgt:youmgt:v:14:y:2016:i:4:p:359-384
    as

    Download full text from publisher

    File URL: http://www.fm-kp.si/zalozba/ISSN/1581-6311/14_359-384.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Rubinstein, R. Y., 1982. "Generating random vectors uniformly distributed inside and on the surface of different regions," European Journal of Operational Research, Elsevier, vol. 10(2), pages 205-209, June.
    3. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2002. "CVaR models with selective hedging for international asset allocation," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1535-1561, July.
    4. Radman Peša, Anita & Brajković, Ana, 2015. "Testing The ‘Black Swan Effect’ on Croatian Stock Market Between 2000 and 2013," MPRA Paper 69223, University Library of Munich, Germany, revised 2015.
    5. Enrico Giorgi & Thorsten Hens & János Mayer, 2007. "Computational aspects of prospect theory with asset pricing applications," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 267-281, May.
    6. Holthausen, Duncan M, 1981. "A Risk-Return Model with Risk and Return Measured as Deviations from a Target Return," American Economic Review, American Economic Association, vol. 71(1), pages 182-188, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael J. Best & Robert R. Grauer, 2017. "Humans, Econs and Portfolio Choice," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-30, June.
    2. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    3. Wakker, Peter P. & Zank, Horst, 2002. "A simple preference foundation of cumulative prospect theory with power utility," European Economic Review, Elsevier, vol. 46(7), pages 1253-1271, July.
    4. Massimiliano Kaucic & Filippo Piccotto & Gabriele Sbaiz & Giorgio Valentinuz, 2023. "Optimal Portfolio with Sustainable Attitudes under Cumulative Prospect Theory," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(4), pages 1-4.
    5. Enrico Giorgi & Thorsten Hens & János Mayer, 2007. "Computational aspects of prospect theory with asset pricing applications," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 267-281, May.
    6. Fortin, Alain-Philippe & Simonato, Jean-Guy & Dionne, Georges, 2023. "Forecasting expected shortfall: Should we use a multivariate model for stock market factors?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 314-331.
    7. Michael Best & Robert Grauer & Jaroslava Hlouskova & Xili Zhang, 2014. "Loss-Aversion with Kinked Linear Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 45-65, June.
    8. Peter P. Wakker, 2023. "The correct formula of 1979 prospect theory for multiple outcomes," Theory and Decision, Springer, vol. 94(2), pages 183-187, February.
    9. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    10. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    11. Enrico G. De Giorgi & Shane Legg, 2009. "Portfolio Selection with Narrow Framing: Probability Weighting Matters," University of St. Gallen Department of Economics working paper series 2009 2009-12, Department of Economics, University of St. Gallen.
    12. Giorgio Consigli & Asmerilda Hitaj & Elisa Mastrogiacomo, 2019. "Portfolio choice under cumulative prospect theory: sensitivity analysis and an empirical study," Computational Management Science, Springer, vol. 16(1), pages 129-154, February.
    13. P Brooks & H Zank, 2004. "Attitudes on Gain and Loss Lotteries: A Simple Experiment," Economics Discussion Paper Series 0402, Economics, The University of Manchester.
    14. Martín Egozcue & Luis Fuentes García & Ričardas Zitikis, 2023. "The Slicing Method: Determining Insensitivity Regions of Probability Weighting Functions," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1369-1402, April.
    15. Enrico Diecidue & Jeroen Van De Ven, 2008. "Aspiration Level, Probability Of Success And Failure, And Expected Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 683-700, May.
    16. Mark Schneider & Robert Day, 2018. "Target-Adjusted Utility Functions and Expected-Utility Paradoxes," Management Science, INFORMS, vol. 64(1), pages 271-287, January.
    17. Harris, Richard D. F. & Mazibas, Murat, 2022. "Portfolio optimization with behavioural preferences and investor memory," European Journal of Operational Research, Elsevier, vol. 296(1), pages 368-387.
    18. Grauer, Robert R., 2013. "Limiting losses may be injurious to your wealth," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5088-5100.
    19. Francesco Cesarone & Massimiliano Corradini & Lorenzo Lampariello & Jessica Riccioni, 2023. "A new behavioral model for portfolio selection using the Half-Full/Half-Empty approach," Papers 2312.10749, arXiv.org.
    20. Fortin, Ines & Hlouskova, Jaroslava, 2011. "Optimal asset allocation under linear loss aversion," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2974-2990, November.

    More about this item

    Keywords

    prospect theory; random sets; interval orders; interval optimization; Croatian stock market;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mgt:youmgt:v:14:y:2016:i:4:p:359-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alen Jezovnik (email available below). General contact details of provider: https://edirc.repec.org/data/fmkupsi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.