IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A general probabilistic spatial theory of elections

  • James Enelow
  • Melvin Hinich

In this paper, we construct a general probabilistic spatial theory of elections and examine sufficient conditions for equilibrium in two-candidate contests with expected vote-maximizing candidates. Given strict concavity of the candidate objective function, a unique equilibrium exists and the candidates adopt the same set of policy positions. Prospective uncertainty, reduced policy salience, degree of concavity of voter utility functions, some degree of centrality in the feasible set of policy locations, and restrictions on the dimensionality of the policy space are all stabilizing factors in two-candidate elections. Copyright Kluwer Academic Publishers 1989

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Public Choice.

Volume (Year): 61 (1989)
Issue (Month): 2 (May)
Pages: 101-113

in new window

Handle: RePEc:kap:pubcho:v:61:y:1989:i:2:p:101-113
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter Coughlin, 1986. "Elections and income redistribution," Public Choice, Springer, vol. 50(1), pages 27-91, January.
  2. Schofield, Norman, 1978. "Instability of Simple Dynamic Games," Review of Economic Studies, Wiley Blackwell, vol. 45(3), pages 575-94, October.
  3. Assar Lindbeck & Jörgen Weibull, 1987. "Balanced-budget redistribution as the outcome of political competition," Public Choice, Springer, vol. 52(3), pages 273-297, January.
  4. Gordon Tullock, 1981. "Why so much stability," Public Choice, Springer, vol. 37(2), pages 189-204, January.
  5. Coughlin, Peter & Nitzan, Shmuel, 1981. "Electoral outcomes with probabilistic voting and Nash social welfare maxima," Journal of Public Economics, Elsevier, vol. 15(1), pages 113-121, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kap:pubcho:v:61:y:1989:i:2:p:101-113. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.