IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v26y2024i1d10.1007_s10109-023-00424-x.html
   My bibliography  Save this article

Synergic effects of meteorological factors on urban form-outdoor exercise relationship: A study with crowdsourced data

Author

Listed:
  • Ye Tian

    (Jiangxi Normal University
    University of Georgia)

  • Xiaobai Angela Yao

    (University of Georgia)

  • Marguerite Madden

    (University of Georgia)

  • Andrew Grundstein

    (University of Georgia)

Abstract

Physical activity could improve individual health and reduce the risk of all-cause mortality. However, for health-promoting urban environments, some questions require further exploration. For instance, how urban form facilitates or constrains outdoor activities? How local meteorology modulates the urban form-outdoor exercise relationship? In this study, we apply a crowdsourced database, Strava, for outdoor exercisers in Atlanta, Georgia, to investigate the synergic effects of meteorological factors on the urban form-outdoor exercise relationship by developing two groups of models; one considers wind factors, and the other does not. The results show that the wind-related group outperforms their counterparts, especially for commute exercisers (R2 = 0.77 vs. R2 = 0.39), males (R2 = 0.51 vs. R2 = 0.39), and age groups of 13–19 (R2 = 0.61 vs. R2 = 0.25), demonstrating that incorporating local meteorological factors into urban form modeling can better reveal outdoor activity patterns. Besides, the urban form could impact the location preferences of individual exercisers, and such impact varies among different subgroups (e.g., seniors consider convenience, safety, and comfort more than young exercisers do). In addition, places become attractive for outdoor exercisers only when multiple urban form requirements are met (e.g., accessibility to public parks and proximity to residential communities). Finally, according to the non-monotonic and marginal effects, the impacts of urban form and meteorological factors on trip volume are only evident within specific ranges. These findings could help decision-makers make informed plans to promote more active and healthier communities.

Suggested Citation

  • Ye Tian & Xiaobai Angela Yao & Marguerite Madden & Andrew Grundstein, 2024. "Synergic effects of meteorological factors on urban form-outdoor exercise relationship: A study with crowdsourced data," Journal of Geographical Systems, Springer, vol. 26(1), pages 47-72, January.
  • Handle: RePEc:kap:jgeosy:v:26:y:2024:i:1:d:10.1007_s10109-023-00424-x
    DOI: 10.1007/s10109-023-00424-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-023-00424-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-023-00424-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinhyun Hong & David Philip McArthur & Mark Livingston, 2020. "The evaluation of large cycling infrastructure investments in Glasgow using crowdsourced cycle data," Transportation, Springer, vol. 47(6), pages 2859-2872, December.
    2. Graham Mecredy & William Pickett & Ian Janssen, 2011. "Street Connectivity is Negatively Associated with Physical Activity in Canadian Youth," IJERPH, MDPI, vol. 8(8), pages 1-18, August.
    3. Helbich, Marco & Böcker, Lars & Dijst, Martin, 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam," Journal of Transport Geography, Elsevier, vol. 38(C), pages 38-47.
    4. Yeran Sun & Yunyan Du & Yu Wang & Liyuan Zhuang, 2017. "Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data," IJERPH, MDPI, vol. 14(6), pages 1-12, June.
    5. Jestico, Ben & Nelson, Trisalyn & Winters, Meghan, 2016. "Mapping ridership using crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 52(C), pages 90-97.
    6. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    7. Laura Alessandretti & Ulf Aslak & Sune Lehmann, 2020. "The scales of human mobility," Nature, Nature, vol. 587(7834), pages 402-407, November.
    8. Wang, Haizhong & Palm, Matthew & Chen, Chen & Vogt, Rachel & Wang, Yiyi, 2016. "Does bicycle network level of traffic stress (LTS) explain bicycle travel behavior? Mixed results from an Oregon case study," Journal of Transport Geography, Elsevier, vol. 57(C), pages 8-18.
    9. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    10. Ye Tian & Xiaobai Yao, 2022. "Urban form, traffic volume, and air quality: A spatiotemporal stratified approach," Environment and Planning B, , vol. 49(1), pages 92-113, January.
    11. Ali Rahimikhoob & Maryam Asadi & Mahmood Mashal, 2013. "A Comparison Between Conventional and M5 Model Tree Methods for Converting Pan Evaporation to Reference Evapotranspiration for Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4815-4826, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Tian & Xiaobai Yao, 2022. "Urban form, traffic volume, and air quality: A spatiotemporal stratified approach," Environment and Planning B, , vol. 49(1), pages 92-113, January.
    2. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    3. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    4. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    6. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    7. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    8. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    9. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    10. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    11. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    12. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    13. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    14. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    15. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    16. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    17. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    18. José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.
    19. Villacis, Alexis & Badruddoza, Syed & Mayorga, Joaquin & Mishra, Ashok K., 2022. "Using Machine Learning to Test the Consistency of Food Insecurity Measures," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322472, Agricultural and Applied Economics Association.
    20. Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2022. "ESG score prediction through random forest algorithm," Computational Management Science, Springer, vol. 19(2), pages 347-373, June.

    More about this item

    Keywords

    Urban form; Local meteorology; Outdoor exercise; Synergic effects; Strava;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:26:y:2024:i:1:d:10.1007_s10109-023-00424-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.