IDEAS home Printed from https://ideas.repec.org/a/kap/iaecre/v29y2023i1d10.1007_s11294-023-09867-w.html
   My bibliography  Save this article

Can Regulation Affect the Solvency of Insurers? New Evidence from European Insurers

Author

Listed:
  • Evaggelia Siopi

    (Democritus University of Thrace)

  • Thomas Poufinas

    (Democritus University of Thrace)

  • James Ming Chen

    (Michigan State University)

  • Charalampos Agiropoulos

    (University of Piraeus)

Abstract

Successive crises in the early twenty-first century prompted regulators around the world to ask financial institutions to implement a series of regulations. These measures aimed to increase transparency, improve consumer and investor protection, restructure financial capital, stabilize insurance and pension markets, and improve solvency. The Solvency II framework introduced in the European Union applied these principles to insurance companies. This study attempts to predict the solvency of an insurer within a set of European insurers. The dataset consists of 29 insurance groups that operate across the European Union with a country of origin within the European Union for the period 2016 to 2020. The variables were constructed from annual financial statements retrieved from (Thomson Reuters) DataStream. The solvency capital requirement ratios were obtained manually from the solvency financial condition reports of each group. Regularized linear regression applying a ℓ1/ least-absolute-shrinkage-and-selection-operator penalty showed that the reinvestment rate, cash and equivalents, long term investment, and losses-benefits-and-adjustments expenses have the greatest predictive impact on the solvency of insurers. The contribution of this paper lies in the identification of determinants that allow insurance companies to maintain strong solvency capital requirement ratios so that they can maintain internal operations with minimal interruption.

Suggested Citation

  • Evaggelia Siopi & Thomas Poufinas & James Ming Chen & Charalampos Agiropoulos, 2023. "Can Regulation Affect the Solvency of Insurers? New Evidence from European Insurers," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 29(1), pages 15-30, May.
  • Handle: RePEc:kap:iaecre:v:29:y:2023:i:1:d:10.1007_s11294-023-09867-w
    DOI: 10.1007/s11294-023-09867-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11294-023-09867-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11294-023-09867-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Ming Chen, 2021. "An Introduction to Machine Learning for Panel Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 27(1), pages 1-16, February.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    3. repec:eme:jrfpps:v:14:y:2013:i:2:p:303-314 is not listed on IDEAS
    4. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    5. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    7. Mathias Bärtl & Simone Krummaker, 2020. "Prediction of Claims in Export Credit Finance: A Comparison of Four Machine Learning Techniques," Risks, MDPI, vol. 8(1), pages 1-27, March.
    8. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    9. T. Joji Rao & Krishan K. Pandey, 2013. "A study on factors influencing claims in general insurance business in India," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 14(3), pages 303-314, May.
    10. T. Joji Rao & Krishan K. Pandey, 2013. "A study on factors influencing claims in general insurance business in India," Journal of Risk Finance, Emerald Group Publishing, vol. 14(3), pages 303-314, May.
    11. Loisel, Stéphane & Piette, Pierrick & Tsai, Cheng-Hsien Jason, 2021. "Applying Economic Measures To Lapse Risk Management With Machine Learning Approaches," ASTIN Bulletin, Cambridge University Press, vol. 51(3), pages 839-871, September.
    12. Kexing Ding & Baruch Lev & Xuan Peng & Ting Sun & Miklos A. Vasarhelyi, 2020. "Machine learning improves accounting estimates: evidence from insurance payments," Review of Accounting Studies, Springer, vol. 25(3), pages 1098-1134, September.
    13. Filippo Curti & Ibrahim Ergen & Minh Le & Marco Migueis & Rob T. Stewart, 2016. "Benchmarking Operational Risk Models," Finance and Economics Discussion Series 2016-070, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    2. Xi Chen & Yang Ha (Tony) Cho & Yiwei Dou & Baruch Lev, 2022. "Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 467-515, May.
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    5. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    6. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    7. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    8. Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
    9. Colak, Gonul & Fu, Mengchuan & Hasan, Iftekhar, 2022. "On modeling IPO failure risk," Economic Modelling, Elsevier, vol. 109(C).
    10. Jaydip Sen & Rajdeep Sen & Abhishek Dutta, 2021. "Machine Learning in Finance-Emerging Trends and Challenges," Papers 2110.11999, arXiv.org.
    11. Paul Geertsema & Helen Lu, 2023. "Relative Valuation with Machine Learning," Journal of Accounting Research, Wiley Blackwell, vol. 61(1), pages 329-376, March.
    12. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
    14. Zhaoxing Gao & Ruey S. Tsay, 2023. "Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors," Papers 2307.07689, arXiv.org.
    15. Wang, Nianling & Zhang, Mingzhi & Zhang, Yuan, 2024. "Return prediction: A tree-based conditional sort approach with firm characteristics," Finance Research Letters, Elsevier, vol. 60(C).
    16. Emanuel Kohlscheen, 2022. "Quantifying the Role of Interest Rates, the Dollar and Covid in Oil Prices," Papers 2208.14254, arXiv.org, revised Oct 2022.
    17. Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    18. Hector O. Zapata & Supratik Mukhopadhyay, 2022. "A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing," JRFM, MDPI, vol. 15(11), pages 1-17, November.
    19. Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
    20. Sonya Georgieva, 2023. "Application of Artificial Intelligence and Machine Learning in the Conduct of Monetary Policy by Central Banks," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 8, pages 177-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:iaecre:v:29:y:2023:i:1:d:10.1007_s11294-023-09867-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.