IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i1d10.1007_s10729-021-09578-w.html
   My bibliography  Save this article

The effect of correlation and false negatives in pool testing strategies for COVID-19

Author

Listed:
  • Leonardo J. Basso

    (University of Chile)

  • Vicente Salinas

    (University of Chile)

  • Denis Sauré

    (University of Chile)

  • Charles Thraves

    (University of Chile)

  • Natalia Yankovic

    (University of Los Andes)

Abstract

During the current COVID-19 pandemic, active testing has risen as a key component of many response strategies around the globe. Such strategies have a common denominator: the limited availability of diagnostic tests. In this context, pool testing strategies have emerged as a means to increase testing capacity. The efficiency gains obtained by using pool testing, derived from testing combined samples simultaneously, vary according to the spread of the SARS-CoV-2 virus in the population being tested. Motivated by the need for testing closed populations, such as long-term care facilities (LTCFs), where significant correlation in infections is expected, we develop a probabilistic model for settings where the test results are correlated, which we use to compute optimal pool sizes in the context of two-stage pool testing schemes. The proposed model incorporates the specificity and sensitivity of the test, which makes it possible to study the impact of these measures on both the expected number of tests required for diagnosing a population and the expected number and variance of false negatives. We use our experience implementing pool testing in LTCFs managed by SENAMA (Chile’s National Service for the Elderly) to develop a simulation model of contagion dynamics inside LTCFs, which incorporates testing and quarantine policies implemented by SENAMA. We use this simulation to estimate the correlation of test results among collected samples when following SENAMA’s testing guidelines. Our results show that correlation estimates are high in settings representative of LTCFs, which validates the use of the proposed model for incorporating correlation in determining optimal pool sizes for pool testing strategies. Generally, our results show that settings in which pool testing achieves efficiency gains, relative to individual testing, are likely to be found in practice. Moreover, the results show that incorporating correlation in the analysis of pool testing strategies both improves the expected efficiency and broadens the settings in which the technique is preferred over individual testing.

Suggested Citation

  • Leonardo J. Basso & Vicente Salinas & Denis Sauré & Charles Thraves & Natalia Yankovic, 2022. "The effect of correlation and false negatives in pool testing strategies for COVID-19," Health Care Management Science, Springer, vol. 25(1), pages 146-165, March.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:1:d:10.1007_s10729-021-09578-w
    DOI: 10.1007/s10729-021-09578-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-021-09578-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-021-09578-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:1:d:10.1007_s10729-021-09578-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.