Author
Listed:
- Kaushal Kumar
(Heidelberg University)
Abstract
Accurate forecasting of crude oil prices is crucial for informed financial decision-making. This study presents a cutting-edge Reservoir Computing (RC) model specifically designed for precise crude oil price predictions, outperforming traditional methods such as ARIMA, LSTM, and GRU. Using daily closing prices from major indices spanning January 2010 to December 2023, we conducted a thorough evaluation. The RC model consistently demonstrates superior accuracy and computational efficiency. Quantitative metrics reveal the RC model’s dominance with a Mean Absolute Error (MAE) of 0.0094, Mean Squared Error (MSE) of 0.00035, Root Mean Squared Error (RMSE) of 0.0196, and a notably low Mean Absolute Percentage Error (MAPE) of $$1.450\%$$ 1.450 % . Additionally, the RC model’s runtime of 1.11 s underscores its computational efficiency, far surpassing ARIMA (493.22 s), LSTM (423.55 s), and GRU (15.73 s). During periods of economic disruption, such as the COVID-19 lockdowns, the RC model effectively captured sharp price fluctuations, highlighting its robust forecasting capability. These findings emphasize the RC model’s potential as a reliable tool for enhancing decision-making processes in the dynamic energy market, particularly for real-time applications such as infectious disease case count forecasting. This study advocates for the broader adoption of Reservoir Computing models to improve predictive accuracy and operational efficiency in energy economics.
Suggested Citation
Kaushal Kumar, 2025.
"Forecasting Crude Oil Prices Using Reservoir Computing Models,"
Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 2543-2563, September.
Handle:
RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10797-w
DOI: 10.1007/s10614-024-10797-w
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10797-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.