IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v66y2025i3d10.1007_s10614-024-10797-w.html
   My bibliography  Save this article

Forecasting Crude Oil Prices Using Reservoir Computing Models

Author

Listed:
  • Kaushal Kumar

    (Heidelberg University)

Abstract

Accurate forecasting of crude oil prices is crucial for informed financial decision-making. This study presents a cutting-edge Reservoir Computing (RC) model specifically designed for precise crude oil price predictions, outperforming traditional methods such as ARIMA, LSTM, and GRU. Using daily closing prices from major indices spanning January 2010 to December 2023, we conducted a thorough evaluation. The RC model consistently demonstrates superior accuracy and computational efficiency. Quantitative metrics reveal the RC model’s dominance with a Mean Absolute Error (MAE) of 0.0094, Mean Squared Error (MSE) of 0.00035, Root Mean Squared Error (RMSE) of 0.0196, and a notably low Mean Absolute Percentage Error (MAPE) of $$1.450\%$$ 1.450 % . Additionally, the RC model’s runtime of 1.11 s underscores its computational efficiency, far surpassing ARIMA (493.22 s), LSTM (423.55 s), and GRU (15.73 s). During periods of economic disruption, such as the COVID-19 lockdowns, the RC model effectively captured sharp price fluctuations, highlighting its robust forecasting capability. These findings emphasize the RC model’s potential as a reliable tool for enhancing decision-making processes in the dynamic energy market, particularly for real-time applications such as infectious disease case count forecasting. This study advocates for the broader adoption of Reservoir Computing models to improve predictive accuracy and operational efficiency in energy economics.

Suggested Citation

  • Kaushal Kumar, 2025. "Forecasting Crude Oil Prices Using Reservoir Computing Models," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 2543-2563, September.
  • Handle: RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10797-w
    DOI: 10.1007/s10614-024-10797-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10797-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10797-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    2. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    3. Joe Yazbeck & John B. Rundle, 2023. "A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers," Land, MDPI, vol. 12(11), pages 1-22, October.
    4. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    5. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    6. Shriram S. Rangarajan & Chandan Kumar Shiva & AVV Sudhakar & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2023. "Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid," Energies, MDPI, vol. 16(3), pages 1-30, January.
    7. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    8. Liwei Zhang & Lisang Liu & Wenwei Chen & Zhihui Lin & Dongwei He & Jian Chen, 2025. "Photovoltaic Power Generation Forecasting Based on Secondary Data Decomposition and Hybrid Deep Learning Model," Energies, MDPI, vol. 18(12), pages 1-25, June.
    9. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    10. Bingchun Liu & Mingzhao Lai, 2025. "Advanced Machine Learning for Financial Markets: A PCA-GRU-LSTM Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 3140-3174, March.
    11. Cheng-Hong Yang & Bo-Hong Chen & Chih-Hsien Wu & Kuo-Chang Chen & Li-Yeh Chuang, 2022. "Deep Learning for Forecasting Electricity Demand in Taiwan," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    12. Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
    13. Kazmi, Hussain & Tao, Zhenmin, 2022. "How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead," Applied Energy, Elsevier, vol. 323(C).
    14. Wilson Castillo-Rojas & Fernando Medina Quispe & César Hernández, 2023. "Photovoltaic Energy Forecast Using Weather Data through a Hybrid Model of Recurrent and Shallow Neural Networks," Energies, MDPI, vol. 16(13), pages 1-25, July.
    15. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    16. Ramadhan, Raden A.A. & Heatubun, Yosca R.J. & Tan, Sek F. & Lee, Hyun-Jin, 2021. "Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power," Renewable Energy, Elsevier, vol. 178(C), pages 1006-1019.
    17. Pavel Buchatskiy & Stefan Onishchenko & Sergei Petrenko & Semen Teploukhov, 2025. "Methodology for Assessing the Technical Potential of Solar Energy Based on Artificial Intelligence Technologies and Simulation-Modeling Tools," Energies, MDPI, vol. 18(19), pages 1-25, October.
    18. Ailton Gonçalves & Gustavo O. Cavalcanti & Marcílio A. F. Feitosa & Roberto F. Dias Filho & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Manoel H. N. Marinho & Attilio Converti & L, 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency," Energies, MDPI, vol. 16(13), pages 1-17, July.
    19. Grothe, Oliver & Kächele, Fabian & Wälde, Mira, 2025. "High-resolution working layouts and time series for renewable energy generation in Europe," Renewable Energy, Elsevier, vol. 239(C).
    20. Mohamed Mroueh & Moustapha Doumiati & Clovis Francis & Mohamed Machmoum, 2024. "An Evidential Solar Irradiance Forecasting Method Using Multiple Sources of Information," Energies, MDPI, vol. 17(24), pages 1-31, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10797-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.