Author
Listed:
- Pavel Buchatskiy
(Laboratory of Renewable Energy, Adyghe State University, Maykop 385000, Russia)
- Stefan Onishchenko
(Laboratory of Renewable Energy, Adyghe State University, Maykop 385000, Russia)
- Sergei Petrenko
(Laboratory of Renewable Energy, Adyghe State University, Maykop 385000, Russia
Information Technology and Artificial Intelligence Group, Sirius University of Science and Technology, Sirius 354340, Russia)
- Semen Teploukhov
(Laboratory of Renewable Energy, Adyghe State University, Maykop 385000, Russia)
Abstract
The integration of renewable energy sources (RES) into energy systems is becoming increasingly widespread around the world, driven by various factors, the most relevant of which is the high environmental friendliness of these types of energy resources and the possibility of creating stable generation systems that are independent of the economic and geopolitical situation. The large-scale involvement of green energy leads to the creation of distributed energy networks that combine several different methods of generation, each with its own characteristics. As a result, the issues of data collection and processing necessary for optimizing the operation of such energy systems are becoming increasingly relevant. The first stage of renewable energy integration involves building models to assess theoretical potential, allowing the feasibility of using a particular type of resource in specific geographical conditions to be determined. The second stage of assessment involves determining the technical potential, which allows the actual energy values that can be obtained by the consumer to be determined. The paper discusses a method for assessing the technical potential of solar energy using the example of a private consumer’s energy system. For this purpose, a generator circuit with load models was implemented in the SimInTech dynamic simulation environment, accepting various sets of parameters as input, which were obtained using an intelligent information search procedure and intelligent forecasting methods. This approach makes it possible to forecast the amount of incoming solar insolation in the short term, whose values are then fed into the simulation model, allowing the forecast values of the technical potential of solar energy for the energy system configuration under consideration to be determined. The implementation of such a hybrid assessment system allows not only the technical potential of RES to be determined based on historical datasets but also provides the opportunity to obtain forecast values for energy production volumes. This allows for flexible configuration of the parameters of the elements used, which makes it possible to scale the solution to the specific configuration of the energy system in use. The proposed solution can be used as one of the elements of distributed energy systems with RES, where the concept of demand distribution and management plays an important role. Its implementation is impossible without predictive models.
Suggested Citation
Pavel Buchatskiy & Stefan Onishchenko & Sergei Petrenko & Semen Teploukhov, 2025.
"Methodology for Assessing the Technical Potential of Solar Energy Based on Artificial Intelligence Technologies and Simulation-Modeling Tools,"
Energies, MDPI, vol. 18(19), pages 1-25, October.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:19:p:5296-:d:1766092
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5296-:d:1766092. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.