IDEAS home Printed from
   My bibliography  Save this article

Risk measures for derivatives with Markov-modulated pure jump processes


  • Robert Elliott


  • Leunglung Chan


  • Tak Siu



We consider a regime-switching HJB approach to evaluate risk measures for derivative securities when the price process of the underlying risky asset is governed by the exponential of a pure jump process with drift and a Markov switching compensator. The pure jump process is flexible enough to incorporate both the infinite, (small), jump activity and the finite, (large), jump activity. The drift and the compensator of the pure jump process switch over time according to the state of a continuous-time hidden Markov chain representing the state of an economy. The market described by our model is incomplete. Hence, there is more than one pricing kernel and there is no perfect hedging strategy for a derivative security. We derive the regime-switching HJB equations for coherent risk measures for the unhedged position of derivative securities, including standard European options and barrier options. For measuring risk inherent in the unhedged option position, we first need to mark the position into the market by valuing the option. We employ a well-known tool in actuarial science, namely, the Esscher transform to select a pricing kernel for valuation of an option and to generate a family of real-world probabilities for risk measurement. We also derive the regime-switching HJB-variational inequalities for coherent risk measures for American-style options. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Robert Elliott & Leunglung Chan & Tak Siu, 2006. "Risk measures for derivatives with Markov-modulated pure jump processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 129-149, June.
  • Handle: RePEc:kap:apfinm:v:13:y:2006:i:2:p:129-149 DOI: 10.1007/s10690-007-9038-9

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    2. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    3. Robert Elliott & Tak Siu & Leunglung Chan, 2008. "A PDE approach for risk measures for derivatives with regime switching," Annals of Finance, Springer, vol. 4(1), pages 55-74, January.
    4. Elliott, R. J. & Malcolm, W. P. & Tsoi, Allanus H., 2003. "Robust parameter estimation for asset price models with Markov modulated volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1391-1409, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Siu, Tak Kuen, 2016. "A functional Itô’s calculus approach to convex risk measures with jump diffusion," European Journal of Operational Research, Elsevier, vol. 250(3), pages 874-883.
    2. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:13:y:2006:i:2:p:129-149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.