IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Asymptotic prediction of mean squared error for long-memory processes with estimated parameters

Listed author(s):
  • Naoya Katayama

    (Faculty of Economics, Kyushu University, Fukuoka, Japan)

Registered author(s):

    In this paper we deal with the prediction theory of long-memory time series. The purpose is to derive a general theory of the convergence of moments of the nonlinear least squares estimator so as to evaluate the asymptotic prediction mean squared error (PMSE). The asymptotic PMSE of two predictors is evaluated. The first is defined by the estimator of the differencing parameter, while the second is defined by a fixed differencing parameter: in other words, a parametric predictor of the seasonal autoregressive integrated moving average model. The effects of misspecifying the differencing parameter is a long-memory model are clarified by the asymptotic results relating to the PMSE. The finite sample behaviour of the predictor and the model selection in terms of PMSE of the two predictors are examined using simulation, and the source of any differences in behaviour made clear in terms of asymptotic theory. Copyright © 2008 John Wiley & Sons, Ltd.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1002/for.1078
    File Function: Link to full text; subscription required
    Download Restriction: no

    Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

    Volume (Year): 27 (2008)
    Issue (Month): 8 ()
    Pages: 690-720

    as
    in new window

    Handle: RePEc:jof:jforec:v:27:y:2008:i:8:p:690-720
    DOI: 10.1002/for.1078
    Contact details of provider: Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Hidalgo, J. & Yajima, Y., 2002. "Prediction And Signal Extraction Of Strongly Dependent Processes In The Frequency Domain," Econometric Theory, Cambridge University Press, vol. 18(03), pages 584-624, June.
    2. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
    3. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
    4. Tanaka, Katsuto & Maekawa, Koichi, 1984. "The sampling distributions of the predictor for an autoregressive model under misspecifications," Journal of Econometrics, Elsevier, vol. 25(3), pages 327-351, July.
    5. Katayama, Naoya, 2007. "Seasonally and Fractionally Differenced Time Series," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 48(1), pages 25-55, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:8:p:690-720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.