IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

Registered author(s):

    Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Processing Unit (CPU). They simulate Agent-Based Models (ABMs) by executing agent actions one at a time. In addition to imposing an un-natural execution order, these toolkits have limited scalability. In this article, we investigate data-parallel computer architectures such as Graphics Processing Units (GPUs) to simulate large scale ABMs. We have developed a series of efficient, data parallel algorithms for handling environment updates, various agent interactions, agent death and replication, and gathering statistics. We present three fundamental innovations that provide unprecedented scalability. The first is a novel stochastic memory allocator which enables parallel agent replication in O(1) average time. The second is a technique for resolving precedence constraints for agent actions in parallel. The third is a method that uses specialized graphics hardware, to gather and process statistical measures. These techniques have been implemented on a modern day GPU resulting in a substantial performance increase. We believe that our system is the first ever completely GPU based agent simulation framework. Although GPUs are the focus of our current implementations, our techniques can easily be adapted to other data-parallel architectures. We have benchmarked our framework against contemporary toolkits using two popular ABMs, namely, SugarScape and StupidModel.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by Journal of Artificial Societies and Social Simulation in its journal Journal of Artificial Societies and Social Simulation.

    Volume (Year): 11 (2008)
    Issue (Month): 4 ()
    Pages: 10

    in new window

    Handle: RePEc:jas:jasssj:2008-36-3
    Contact details of provider:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2008-36-3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Flaminio Squazzoni)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.