IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v53y2019i3p773-795.html
   My bibliography  Save this article

The Airlift Planning Problem

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Allison Chang

    (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420)

  • Velibor V. Mišić

    (Anderson School of Management, University of California, Los Angeles, Los Angeles, California 90095)

  • Nishanth Mundru

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

The U.S. Transportation Command (USTRANSCOM) is responsible for planning and executing the transportation of U.S. military personnel and cargo by air, land, and sea. The airlift planning problem faced by the air component of USTRANSCOM is to decide how requirements (passengers and cargo) will be assigned to the available aircraft fleet and the sequence of pickups and drop-offs that each aircraft will perform to ensure that the requirements are delivered with minimal delay and with maximum utilization of the available aircraft. This problem is of significant interest to USTRANSCOM because of the highly time-sensitive nature of the requirements that are typically designated for delivery by airlift, as well as the very high cost of airlift operations. At the same time, the airlift planning problem is extremely difficult to solve because of the combinatorial nature of the problem and the numerous constraints present in the problem (such as weight restrictions and crew rest requirements). In this paper, we propose an approach for solving the airlift planning problem faced by USTRANSCOM based on modern, large-scale optimization. Our approach relies on solving a large-scale mixed-integer programming model that disentangles the assignment decision (which aircraft will pickup and deliver which requirement) from the sequencing decision (in what order the aircraft will pickup and deliver its assigned requirements), using a combination of heuristics and column generation. Through computational experiments with both a simulated data set and a planning data set provided by USTRANSCOM, we show that our approach leads to high-quality solutions for realistic instances (e.g., 100 aircraft and 100 requirements) within operationally feasible time frames. Compared with a baseline approach that emulates current practice at USTRANSCOM, our approach leads to reductions in total delay and aircraft time of 8%–12% in simulated data instances and 16%–40% in USTRANSCOM’s planning instances.

Suggested Citation

  • Dimitris Bertsimas & Allison Chang & Velibor V. Mišić & Nishanth Mundru, 2019. "The Airlift Planning Problem," Transportation Science, INFORMS, vol. 53(3), pages 773-773, May.
  • Handle: RePEc:inm:ortrsc:v:53:y:2019:i:3:p:773-795
    DOI: 10.1287/trsc.2018.0847
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2018.0847
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2018.0847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy A. Carnes & Shane G. Henderson & David B. Shmoys & Mahvareh Ahghari & Russell D. MacDonald, 2013. "Mathematical Programming Guides Air-Ambulance Routing at Ornge," Interfaces, INFORMS, vol. 43(3), pages 232-239, May-June.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Martin Savelsbergh & Marc Sol, 1998. "Drive: Dynamic Routing of Independent Vehicles," Operations Research, INFORMS, vol. 46(4), pages 474-490, August.
    4. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    5. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    6. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    7. Thomas W. M. Vossen & Robert Hoffman & Avijit Mukherjee, 2012. "Air Traffic Flow Management," International Series in Operations Research & Management Science, in: Cynthia Barnhart & Barry Smith (ed.), Quantitative Problem Solving Methods in the Airline Industry, edition 127, chapter 0, pages 385-453, Springer.
    8. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    9. Bertsimas, Dimitris & Gupta, Shubham & Lulli, Guglielmo, 2014. "Dynamic resource allocation: A flexible and tractable modeling framework," European Journal of Operational Research, Elsevier, vol. 236(1), pages 14-26.
    10. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    11. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    12. Maria Battarra & Güneş Erdoğan & Daniele Vigo, 2014. "Exact Algorithms for the Clustered Vehicle Routing Problem," Operations Research, INFORMS, vol. 62(1), pages 58-71, February.
    13. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    14. Mikkel Sigurd & David Pisinger & Michael Sig, 2004. "Scheduling Transportation of Live Animals to Avoid the Spread of Diseases," Transportation Science, INFORMS, vol. 38(2), pages 197-209, May.
    15. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    16. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    17. Irnich, S. & Schneider, M. & Vigo, D., 2014. "Four Variants of the Vehicle Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63514, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cha, Guesik & Park, Junseok & Moon, Ilkyeong, 2023. "Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    2. Timothy Curtois & Dario Landa-Silva & Yi Qu & Wasakorn Laesanklang, 2018. "Large neighbourhood search with adaptive guided ejection search for the pickup and delivery problem with time windows," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 151-192, June.
    3. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    4. Veaceslav Ghilas & Jean-François Cordeau & Emrah Demir & Tom Van Woensel, 2018. "Branch-and-Price for the Pickup and Delivery Problem with Time Windows and Scheduled Lines," Transportation Science, INFORMS, vol. 52(5), pages 1191-1210, October.
    5. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    6. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    7. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    8. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    9. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    11. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    12. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    13. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Delgado, Felipe & Mora, Julio, 2021. "A matheuristic approach to the air-cargo recovery problem under demand disruption," Journal of Air Transport Management, Elsevier, vol. 90(C).
    15. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    16. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    17. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    18. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    19. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi, 2011. "An Exact Algorithm for the Pickup and Delivery Problem with Time Windows," Operations Research, INFORMS, vol. 59(2), pages 414-426, April.
    20. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:53:y:2019:i:3:p:773-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.