IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i4p870-885.html
   My bibliography  Save this article

Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems

Author

Listed:
  • Dimitri J. Papageorgiou

    (Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801)

  • Myun-Seok Cheon

    (Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801)

  • George Nemhauser

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Joel Sokol

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We study a deterministic maritime inventory routing problem with a long planning horizon. For instances with many ports and many vessels, mixed-integer linear programming (MIP) solvers often require hours to produce good solutions even when the planning horizon is 90 or 120 periods. Building on the recent successes of approximate dynamic programming (ADP) for road-based applications within the transportation community, we develop an ADP procedure to generate good solutions to these problems within minutes. Our algorithm operates by solving many small subproblems (one for each time period) and by collecting information about how to produce better solutions. Our main contribution to the ADP community is an algorithm that solves MIP subproblems and uses separable piecewise linear continuous, but not necessarily concave or convex, value function approximations and requires no off-line training. Our algorithm is one of the first of its kind for maritime transportation problems and represents a significant departure from the traditional methods used. In particular, whereas virtually all existing methods are “MIP-centric,” i.e., they rely heavily on a solver to tackle a nontrivial MIP to generate a good or improving solution in a couple of minutes, our framework puts the effort on finding suitable value function approximations and places much less responsibility on the solver. Computational results illustrate that with a relatively simple framework, our ADP approach is able to generate good solutions to instances with many ports and vessels much faster than a commercial solver emphasizing feasibility and a popular local search procedure.

Suggested Citation

  • Dimitri J. Papageorgiou & Myun-Seok Cheon & George Nemhauser & Joel Sokol, 2015. "Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems," Transportation Science, INFORMS, vol. 49(4), pages 870-885, November.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:4:p:870-885
    DOI: 10.1287/trsc.2014.0542
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2014.0542
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2014.0542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Topaloglu, H., 2006. "A parallelizable dynamic fleet management model with random travel times," European Journal of Operational Research, Elsevier, vol. 175(2), pages 782-805, December.
    2. Juliana M. Nascimento & Warren B. Powell, 2009. "An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 210-237, February.
    3. Elin Halvorsen-Weare & Kjetil Fagerholt, 2013. "Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints," Annals of Operations Research, Springer, vol. 203(1), pages 167-186, March.
    4. Dimitri J. Papageorgiou & Ahmet B. Keha & George L. Nemhauser & Joel Sokol, 2014. "Two-Stage Decomposition Algorithms for Single Product Maritime Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 825-847, November.
    5. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    6. Kristin Uggen & Marte Fodstad & Vibeke Nørstebø, 2013. "Using and extending fix-and-relax to solve maritime inventory routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 355-377, July.
    7. Huseyin Topaloglu & Warren B. Powell, 2006. "Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 31-42, February.
    8. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    9. Andrzej Ruszczyński, 2010. "Commentary ---Post-Decision States and Separable Approximations Are Powerful Tools of Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 20-22, February.
    10. Roar Grønhaug & Marielle Christiansen, 2009. "Supply Chain Optimization for the Liquefied Natural Gas Business," Lecture Notes in Economics and Mathematical Systems, in: Jo A.E.E. Nunen & M. Grazia Speranza & Luca Bertazzi (ed.), Innovations in Distribution Logistics, chapter 10, pages 195-218, Springer.
    11. Roar Grønhaug & Marielle Christiansen & Guy Desaulniers & Jacques Desrosiers, 2010. "A Branch-and-Price Method for a Liquefied Natural Gas Inventory Routing Problem," Transportation Science, INFORMS, vol. 44(3), pages 400-415, August.
    12. Jørgen Glomvik Rakke & Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2015. "A New Formulation Based on Customer Delivery Patterns for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 384-401, May.
    13. Kevin C. Furman & Jin-Hwa Song & Gary R. Kocis & Michael K. McDonald & Philip H. Warrick, 2011. "Feedstock Routing in the ExxonMobil Downstream Sector," Interfaces, INFORMS, vol. 41(2), pages 149-163, April.
    14. Faramroze G. Engineer & Kevin C. Furman & George L. Nemhauser & Martin W. P. Savelsbergh & Jin-Hwa Song, 2012. "A Branch-Price-and-Cut Algorithm for Single-Product Maritime Inventory Routing," Operations Research, INFORMS, vol. 60(1), pages 106-122, February.
    15. Alejandro Toriello & George Nemhauser & Martin Savelsbergh, 2010. "Decomposing inventory routing problems with approximate value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 718-727, December.
    16. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyu Li & Kjetil Fagerholt & Peter Schütz, 2023. "Maritime inventory routing with transshipment: the case of Yamal LNG," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 269-294, March.
    2. Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2016. "A new decomposition algorithm for a liquefied natural gas inventory routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 564-578, January.
    3. Di Wu & Xuejun Ji & Fang Xiao & Shijie Sheng, 2022. "A Location Inventory Routing Optimisation Model and Algorithm for a Remote Island Shipping Network considering Emergency Inventory," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    4. Lyu, Zhongyuan & Huang, George Q., 2023. "Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 311(1), pages 112-124.
    5. Koza, David Franz & Ropke, Stefan & Boleda Molas, Anna, 2017. "The liquefied natural gas infrastructure and tanker fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 96-114.
    6. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    7. Yuan, Yuan & Tang, Lixin, 2017. "Novel time-space network flow formulation and approximate dynamic programming approach for the crane scheduling in a coil warehouse," European Journal of Operational Research, Elsevier, vol. 262(2), pages 424-437.
    8. Yazdani, Majid & Aouam, Tarik, 2023. "Shipment planning and safety stock placement in maritime supply chains with stochastic demand and transportation times," International Journal of Production Economics, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mutlu, Fatih & Msakni, Mohamed K. & Yildiz, Hakan & Sönmez, Erkut & Pokharel, Shaligram, 2016. "A comprehensive annual delivery program for upstream liquefied natural gas supply chain," European Journal of Operational Research, Elsevier, vol. 250(1), pages 120-130.
    2. Agostinho Agra & Marielle Christiansen & Kristine S. Ivarsøy & Ida Elise Solhaug & Asgeir Tomasgard, 2017. "Combined ship routing and inventory management in the salmon farming industry," Annals of Operations Research, Springer, vol. 253(2), pages 799-823, June.
    3. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    4. Papageorgiou, Dimitri J. & Nemhauser, George L. & Sokol, Joel & Cheon, Myun-Seok & Keha, Ahmet B., 2014. "MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results," European Journal of Operational Research, Elsevier, vol. 235(2), pages 350-366.
    5. Hemmati, Ahmad & Hvattum, Lars Magnus & Christiansen, Marielle & Laporte, Gilbert, 2016. "An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 775-788.
    6. Dimitri J. Papageorgiou & Ahmet B. Keha & George L. Nemhauser & Joel Sokol, 2014. "Two-Stage Decomposition Algorithms for Single Product Maritime Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 825-847, November.
    7. Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2016. "A new decomposition algorithm for a liquefied natural gas inventory routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 564-578, January.
    8. Cho, Jaeyoung & Lim, Gino J. & Kim, Seon Jin & Biobaku, Taofeek, 2018. "Liquefied natural gas inventory routing problem under uncertain weather conditions," International Journal of Production Economics, Elsevier, vol. 204(C), pages 18-29.
    9. Agra, Agostinho & Christiansen, Marielle & Delgado, Alexandrino & Simonetti, Luidi, 2014. "Hybrid heuristics for a short sea inventory routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 924-935.
    10. Mingyu Li & Peter Schütz, 2020. "Planning Annual LNG Deliveries with Transshipment," Energies, MDPI, vol. 13(6), pages 1-24, March.
    11. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    12. Jørgen Glomvik Rakke & Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2015. "A New Formulation Based on Customer Delivery Patterns for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 384-401, May.
    13. Koza, David Franz & Ropke, Stefan & Boleda Molas, Anna, 2017. "The liquefied natural gas infrastructure and tanker fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 96-114.
    14. Prochazka, Vit & Adland, Roar & Wallace, Stein W., 2019. "The value of foresight in the drybulk freight market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 232-245.
    15. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    16. Guy Desaulniers & Jørgen G. Rakke & Leandro C. Coelho, 2016. "A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 50(3), pages 1060-1076, August.
    17. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    18. Mingyu Li & Kjetil Fagerholt & Peter Schütz, 2023. "Maritime inventory routing with transshipment: the case of Yamal LNG," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 269-294, March.
    19. Archetti, Claudia & Speranza, M. Grazia & Boccia, Maurizio & Sforza, Antonio & Sterle, Claudio, 2020. "A branch-and-cut algorithm for the inventory routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 282(3), pages 886-895.
    20. Ilya O. Ryzhov & Martijn R. K. Mes & Warren B. Powell & Gerald van den Berg, 2019. "Bayesian Exploration for Approximate Dynamic Programming," Operations Research, INFORMS, vol. 67(1), pages 198-214, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:4:p:870-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.