IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v39y2005i3p328-339.html
   My bibliography  Save this article

Routing for a Just-in-Time Supply Pickup and Delivery System

Author

Listed:
  • Keng Hoo Chuah

    (Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky 40506-0108)

  • Jon C. Yingling

    (Department of Manufacturing Systems Engineering, University of Kentucky, Lexington, Kentucky 40506-0107)

Abstract

An optimization-based approach is developed for routing a just-in-time (JIT) supply pickup and delivery system. The approach defines routes among suppliers serving a large JIT assembly plant, the timing of these routes, and the frequency that they are run (implicitly defining parts quantities picked up each visit). The solutions satisfy various operational constraints at the JIT facility, including requirements for high-frequency/small-quantity deliveries and limits on space for parts storage. The solution space we consider here is restricted by an operational discipline that the industry calls common frequency routing. Under this system we only consider routing designs where each part source is being served by a single route run at a fixed daily frequency instead of designs where multiple routes visit that supplier, each potentially run at a different frequency. This dramatically reduces dimensionality of the problem and is also known to provide both management and operational advantages in practice. In solving the formulation, column generation and tabu search strategies have been developed, the latter suitable for realistic-sized problems. The utility of the approach is illustrated through a number of examples.

Suggested Citation

  • Keng Hoo Chuah & Jon C. Yingling, 2005. "Routing for a Just-in-Time Supply Pickup and Delivery System," Transportation Science, INFORMS, vol. 39(3), pages 328-339, August.
  • Handle: RePEc:inm:ortrsc:v:39:y:2005:i:3:p:328-339
    DOI: 10.1287/trsc.1040.0092
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1040.0092
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1040.0092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas A. Popken, 1994. "An Algorithm for the Multiattribute, Multicommodity Flow Problem with Freight Consolidation and Inventory Costs," Operations Research, INFORMS, vol. 42(2), pages 274-286, April.
    2. Niklas Kohl & Jacques Desrosiers & Oli B. G. Madsen & Marius M. Solomon & François Soumis, 1999. "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 33(1), pages 101-116, February.
    3. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    4. T. William Chien & Anantaram Balakrishnan & Richard T. Wong, 1989. "An Integrated Inventory Allocation and Vehicle Routing Problem," Transportation Science, INFORMS, vol. 23(2), pages 67-76, May.
    5. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    6. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    7. Jonathan F. Bard & Liu Huang & Patrick Jaillet & Moshe Dror, 1998. "A Decomposition Approach to the Inventory Routing Problem with Satellite Facilities," Transportation Science, INFORMS, vol. 32(2), pages 189-203, May.
    8. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaofang Mao & Dian Huang & Kan Fang & Chengbo Wang & Dandan Lu, 2020. "Milk-run routing problem with progress-lane in the collection of automobile parts," Annals of Operations Research, Springer, vol. 291(1), pages 657-684, August.
    2. Xuan Qiu & Jasmine Siu Lee Lam, 2018. "The Value of Sharing Inland Transportation Services in a Dry Port System," Transportation Science, INFORMS, vol. 52(4), pages 835-849, August.
    3. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    4. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Güner, Ali R. & Murat, Alper & Chinnam, Ratna Babu, 2017. "Dynamic routing for milk-run tours with time windows in stochastic time-dependent networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 251-267.
    6. Dong, Zhijie & Turnquist, Mark A., 2015. "Combining service frequency and vehicle routing for managing supplier shipments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 231-243.
    7. Jose Gonzalez-Velarde & Salvador Garcia-Lumbreras & Alberto Garcia-Diaz, 2008. "A multi-stop routing problem," Annals of Operations Research, Springer, vol. 157(1), pages 153-167, January.
    8. Meyer, Anne & Amberg, Boris, 2018. "Transport concept selection considering supplier milk runs – An integrated model and a case study from the automotive industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 147-169.
    9. Qiu, Xuan & Huang, George Q., 2016. "Transportation service sharing and replenishment/delivery scheduling in Supply Hub in Industrial Park (SHIP)," International Journal of Production Economics, Elsevier, vol. 175(C), pages 109-120.
    10. Wang, Yu & Chen, Feng & Chen, Zhi-Long, 2018. "Pickup and delivery of automobiles from warehouses to dealers," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 412-430.
    11. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    12. Chitsaz, Masoud & Cordeau, Jean-François & Jans, Raf, 2020. "A branch-and-cut algorithm for an assembly routing problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 896-910.
    13. Masoud Chitsaz & Jean-François Cordeau & Raf Jans, 2019. "A Unified Decomposition Matheuristic for Assembly, Production, and Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 134-152, February.
    14. Bertazzi, Luca & Laganà, Demetrio & Ohlmann, Jeffrey W. & Paradiso, Rosario, 2020. "An exact approach for cyclic inbound inventory routing in a level production system," European Journal of Operational Research, Elsevier, vol. 283(3), pages 915-928.
    15. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    3. Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
    4. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    5. Lau, Hoong Chuin & Sim, Melvyn & Teo, Kwong Meng, 2003. "Vehicle routing problem with time windows and a limited number of vehicles," European Journal of Operational Research, Elsevier, vol. 148(3), pages 559-569, August.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    8. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2015. "A column generation approach for a multi-attribute vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 888-906.
    9. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    10. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    11. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    12. Spliet, R. & Gabor, A.F., 2012. "The Time Window Assignment Vehicle Routing Problem," Econometric Institute Research Papers EI 2012-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    14. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    15. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    16. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    17. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    18. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    19. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    20. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:39:y:2005:i:3:p:328-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.