IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v38y2004i4p447-458.html
   My bibliography  Save this article

A Robust Solution Approach to the Dynamic Vehicle Scheduling Problem

Author

Listed:
  • Dennis Huisman

    (Erasmus Center for Optimization in Public Transport (ECOPT), and Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands)

  • Richard Freling

    (In memoriam: Richard Freling passed away on January 29, 2002, at the age of 34. He was with Erasmus Center for Optimization in Public Transport (ECOPT), and Econometric Institute, Erasmus University Rotterdam, The Netherlands)

  • Albert P. M. Wagelmans

    (Erasmus Center for Optimization in Public Transport (ECOPT), and Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands)

Abstract

This paper presents a solution approach to the dynamic vehicle scheduling problem. This approach consists of solving a sequence of optimization problems, where we take into account different scenarios for future travel times. We discuss the potential benefit of our approach compared to the traditional one, where the vehicle scheduling problem is solved only once for a whole period and the travel times are assumed to be fixed. Because in the multiple-depot case we cannot solve the problem exactly within reasonable computation time, we use a “cluster-reschedule” heuristic where we first assign trips to depots by solving the static problem and then solve dynamic single-depot problems. We use new mathematical formulations of these problems that allow fast solution by standard optimization software. Results of a computational study with real-life data are presented, in which we compare different variants of our approach and perform a sensitivity analysis with respect to deviations of the actual travel times from estimated ones.

Suggested Citation

  • Dennis Huisman & Richard Freling & Albert P. M. Wagelmans, 2004. "A Robust Solution Approach to the Dynamic Vehicle Scheduling Problem," Transportation Science, INFORMS, vol. 38(4), pages 447-458, November.
  • Handle: RePEc:inm:ortrsc:v:38:y:2004:i:4:p:447-458
    DOI: 10.1287/trsc.1030.0069
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1030.0069
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1030.0069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Freling & Albert P. M. Wagelmans & José M. Pinto Paixão, 2001. "Models and Algorithms for Single-Depot Vehicle Scheduling," Transportation Science, INFORMS, vol. 35(2), pages 165-180, May.
    2. Celso C. Ribeiro & François Soumis, 1994. "A Column Generation Approach to the Multiple-Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 42(1), pages 41-52, February.
    3. Warren B. Powell & Michael T. Towns & Arun Marar, 2000. "On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of User Noncompliance," Transportation Science, INFORMS, vol. 34(1), pages 67-85, February.
    4. Knut Haase & Guy Desaulniers & Jacques Desrosiers, 2001. "Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems," Transportation Science, INFORMS, vol. 35(3), pages 286-303, August.
    5. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huisman, Dennis & Wagelmans, Albert P.M., 2006. "A solution approach for dynamic vehicle and crew scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 453-471, July.
    2. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "Real-time vehicle rerouting problems with time windows," European Journal of Operational Research, Elsevier, vol. 194(3), pages 711-727, May.
    3. Uçar, Ezgi & İlker Birbil, Ş. & Muter, İbrahim, 2017. "Managing disruptions in the multi-depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 249-269.
    4. Bastian Amberg & Boris Amberg & Natalia Kliewer, 2019. "Robust Efficiency in Urban Public Transportation: Minimizing Delay Propagation in Cost-Efficient Bus and Driver Schedules," Service Science, INFORMS, vol. 53(1), pages 89-112, February.
    5. Ricard, Léa & Desaulniers, Guy & Lodi, Andrea & Rousseau, Louis-Martin, 2024. "Increasing schedule reliability in the multiple depot vehicle scheduling problem with stochastic travel time," Omega, Elsevier, vol. 127(C).
    6. Balázs Dávid & Miklós Krész, 2017. "The dynamic vehicle rescheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 809-830, December.
    7. Dennis Huisman & Richard Freling & Albert P. M. Wagelmans, 2005. "Multiple-Depot Integrated Vehicle and Crew Scheduling," Transportation Science, INFORMS, vol. 39(4), pages 491-502, November.
    8. Guedes, Pablo C. & Borenstein, Denis, 2018. "Real-time multi-depot vehicle type rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 217-234.
    9. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    10. van Lieshout, R.N. & Mulder, J. & Huisman, D., 2016. "The Vehicle Rescheduling Problem with Retiming," Econometric Institute Research Papers EI2016-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Shen, Yindong & Xu, Jia & Li, Jingpeng, 2016. "A probabilistic model for vehicle scheduling based on stochastic trip times," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 19-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    2. Perumal, S.S.G. & Dollevoet, T.A.B. & Huisman, D. & Lusby, R.M. & Larsen, J. & Riis, M., 2020. "Solution Approaches for Vehicle and Crew Scheduling with Electric Buses," Econometric Institute Research Papers EI-2020-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    5. Markó Horváth & Tamás Kis, 2019. "Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 39-67, March.
    6. Uçar, Ezgi & İlker Birbil, Ş. & Muter, İbrahim, 2017. "Managing disruptions in the multi-depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 249-269.
    7. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    8. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    9. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    10. Huisman, Dennis & Wagelmans, Albert P.M., 2006. "A solution approach for dynamic vehicle and crew scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 453-471, July.
    11. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    12. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Ahmed Hadjar & Odile Marcotte & François Soumis, 2006. "A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 54(1), pages 130-149, February.
    14. Hollis, B.L. & Forbes, M.A. & Douglas, B.E., 2006. "Vehicle routing and crew scheduling for metropolitan mail distribution at Australia Post," European Journal of Operational Research, Elsevier, vol. 173(1), pages 133-150, August.
    15. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    16. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    17. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhan, Shuguang & Peng, Qiyuan, 2024. "Joint rolling stock rotation planning and depot deadhead scheduling in complicated urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 314(2), pages 665-684.
    18. Le-Anh, T. & de Koster, M.B.M., 2004. "A Review Of Design And Control Of Automated Guided Vehicle Systems," ERIM Report Series Research in Management ERS;2004-030-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    20. Van der Perre, Peter P. G. & Van Oudheusden, Dirk D. L., 1997. "Reducing depot-related costs of large bus operators a case study in Bangkok," European Journal of Operational Research, Elsevier, vol. 96(1), pages 45-53, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:38:y:2004:i:4:p:447-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.