IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i6p1659-1677.html
   My bibliography  Save this article

Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function

Author

Listed:
  • Onur Tavaslıoğlu

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

  • Oleg A. Prokopyev

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

  • Andrew J. Schaefer

    (Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005)

Abstract

We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be used to reformulate two classes of mixed-integer optimization problems: two-stage stochastic mixed-integer programming and multifollower bilevel mixed-integer programming. For both of these problem classes, the generalized value function approach allows the solution of instances that are significantly larger than those solved in the literature in terms of the total number of variables and number of scenarios.

Suggested Citation

  • Onur Tavaslıoğlu & Oleg A. Prokopyev & Andrew J. Schaefer, 2019. "Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function," Operations Research, INFORMS, vol. 67(6), pages 1659-1677, November.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1659-1677
    DOI: 10.1287/opre.2019.1842
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1842
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    2. Huang, Kai & Ahmed, Shabbir, 2010. "A stochastic programming approach for planning horizons of infinite horizon capacity planning problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 74-84, January.
    3. Hanif D. Sherali & Allen L. Soyster & Frederic H. Murphy, 1983. "Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations," Operations Research, INFORMS, vol. 31(2), pages 253-276, April.
    4. Merve Bodur & Sanjeeb Dash & Oktay Günlük & James Luedtke, 2017. "Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 77-91, February.
    5. WOLSEY, Laurence A., 1981. "Integer programming duality: price functions and sensitivity analysis," LIDAM Reprints CORE 431, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Wang, Hsiao-Fan & Horng, Jyh-Shing, 1996. "Structural approach to parametric analysis of an IP on the case of the right-hand side," European Journal of Operational Research, Elsevier, vol. 92(1), pages 148-156, July.
    7. Alonso, Antonio & Escudero, Laureano F. & Teresa Ortuno, M., 2000. "A stochastic 0-1 program based approach for the air traffic flow management problem," European Journal of Operational Research, Elsevier, vol. 120(1), pages 47-62, January.
    8. Lewis Ntaimo, 2010. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse," Operations Research, INFORMS, vol. 58(1), pages 229-243, February.
    9. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    10. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    11. Linus Schrage & Laurence Wolsey, 1985. "Sensitivity Analysis for Branch and Bound Integer Programming," Operations Research, INFORMS, vol. 33(5), pages 1008-1023, October.
    12. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    13. Yang Yuan & Suvrajeet Sen, 2009. "Enhanced Cut Generation Methods for Decomposition-Based Branch and Cut for Two-Stage Stochastic Mixed-Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 480-487, August.
    14. Caroe, Claus C. & Tind, Jorgen, 1997. "A cutting-plane approach to mixed 0-1 stochastic integer programs," European Journal of Operational Research, Elsevier, vol. 101(2), pages 306-316, September.
    15. Lewis Ntaimo, 2013. "Fenchel decomposition for stochastic mixed-integer programming," Journal of Global Optimization, Springer, vol. 55(1), pages 141-163, January.
    16. John R. Birge, 1997. "State-of-the-Art-Survey---Stochastic Programming: Computation and Applications," INFORMS Journal on Computing, INFORMS, vol. 9(2), pages 111-133, May.
    17. Brian Keller & Güzin Bayraksan, 2012. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Generalized Upper Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 172-186, February.
    18. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    19. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    20. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    21. M. W. Dawande & J. N. Hooker, 2000. "Inference-Based Sensitivity Analysis for Mixed Integer/Linear Programming," Operations Research, INFORMS, vol. 48(4), pages 623-634, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    2. Rahman Khorramfar & Osman Ozaltin & Reha Uzsoy & Karl Kempf, 2024. "Coordinating Resource Allocation during Product Transitions Using a Multifollower Bilevel Programming Model," Papers 2401.17402, arXiv.org.
    3. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    4. Dimitris Bertsimas & Bartolomeo Stellato, 2022. "Online Mixed-Integer Optimization in Milliseconds," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2229-2248, July.
    5. Akshit Goyal & Yiling Zhang & Chuan He, 2023. "Decision Rule Approaches for Pessimistic Bilevel Linear Programs Under Moment Ambiguity with Facility Location Applications," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1342-1360, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    3. Rui Chen & James Luedtke, 2022. "On Generating Lagrangian Cuts for Two-Stage Stochastic Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2332-2349, July.
    4. Brian Keller & Güzin Bayraksan, 2012. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Generalized Upper Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 172-186, February.
    5. Ward Romeijnders & Niels van der Laan, 2020. "Pseudo-Valid Cutting Planes for Two-Stage Mixed-Integer Stochastic Programs with Right-Hand-Side Uncertainty," Operations Research, INFORMS, vol. 68(4), pages 1199-1217, July.
    6. Andrew C. Trapp & Oleg A. Prokopyev & Andrew J. Schaefer, 2013. "On a Level-Set Characterization of the Value Function of an Integer Program and Its Application to Stochastic Programming," Operations Research, INFORMS, vol. 61(2), pages 498-511, April.
    7. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    8. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    9. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    10. Magnus Hoffmann & Grégoire Rota‐Graziosi, 2020. "Endogenous timing in the presence of non‐monotonicities," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 359-402, February.
    11. Lina Mallozzi & Panos M. Pardalos, 2022. "Entropic Regularization in Hierarchical Games," SN Operations Research Forum, Springer, vol. 3(1), pages 1-14, March.
    12. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    13. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    14. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    15. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    16. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    17. Kathryn M. Schumacher & Amy E. M. Cohn & Richard Li-Yang Chen, 2017. "Algorithm for the N -2 Security-Constrained Unit Commitment Problem with Transmission Switching," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 645-659, November.
    18. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.
    19. M. W. Dawande & J. N. Hooker, 2000. "Inference-Based Sensitivity Analysis for Mixed Integer/Linear Programming," Operations Research, INFORMS, vol. 48(4), pages 623-634, August.
    20. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:6:p:1659-1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.