IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i4p867-885.html
   My bibliography  Save this article

Modeling Load and Overwork Effects in Queueing Systems with Adaptive Service Rates

Author

Listed:
  • Mohammad Delasay

    () (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Armann Ingolfsson

    () (Alberta School of Business, University of Alberta, Edmonton, Alberta T6G 2R6, Canada)

  • Bora Kolfal

    () (Alberta School of Business, University of Alberta, Edmonton, Alberta T6G 2R6, Canada)

Abstract

Servers in many real queueing systems do not work at a constant speed. They adapt to the system state by speeding up when the system is highly loaded or slowing down when load has been high for an extended time period. Their speed can also be constrained by other factors, such as geography or a downstream blockage. We develop a state-dependent queueing model in which the service rate depends on the system “load” and “overwork.” Overwork refers to a situation where the system has been under a heavy load for an extended time period. We quantify load as the number of users in the system, and we operationalize overwork with a state variable that is incremented with each service completion in a high-load period and decremented at a rate that is proportional to the number of idle servers during low-load periods. Our model is a quasi-birth-and-death process with a special structure that we exploit to develop efficient and easy-to-implement algorithms to compute system performance measures. We use the analytical model and simulation to demonstrate how using models that ignore adaptive server behavior can result in inconsistencies between planned and realized performance and can lead to suboptimal, unstable, or oscillatory staffing decisions.

Suggested Citation

  • Mohammad Delasay & Armann Ingolfsson & Bora Kolfal, 2016. "Modeling Load and Overwork Effects in Queueing Systems with Adaptive Service Rates," Operations Research, INFORMS, vol. 64(4), pages 867-885, August.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:4:p:867-885
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1499
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:4:p:867-885. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.