IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i3p694-710.html
   My bibliography  Save this article

A Graph Patrol Problem with Random Attack Times

Author

Listed:
  • Kyle Y. Lin

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

  • Michael P. Atkinson

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

  • Timothy H. Chung

    (Systems Engineering Department, Naval Postgraduate School, Monterey, California 93943)

  • Kevin D. Glazebrook

    (Department of Management Science, Lancaster University Management School, Lancaster LA1 4YX, United Kingdom)

Abstract

This paper presents a patrol problem, where a patroller traverses a graph through edges to detect potential attacks at nodes. To design a patrol policy, the patroller needs to take into account not only the graph structure, but also the different attack time distributions, as well as different costs incurred due to successful attacks, at different nodes. We consider both random attackers and strategic attackers. A random attacker chooses which node to attack according to a probability distribution known to the patroller. A strategic attacker plays a two-person zero-sum game with the patroller. For each case, we give an exact linear program to compute the optimal solution. Because the linear programs quickly become computationally intractable as the problem size grows, we develop index-based heuristics. In the random-attacker case, our heuristic is optimal when there are two nodes, and in a suitably chosen asymptotic regime. In the strategic-attacker case, our heuristic is optimal when there are two nodes if the attack times are deterministic taking integer values. In our numerical experiments, our heuristic typically achieves within 1% of optimality with computation time orders of magnitude less than what is required to compute the optimal policy.

Suggested Citation

  • Kyle Y. Lin & Michael P. Atkinson & Timothy H. Chung & Kevin D. Glazebrook, 2013. "A Graph Patrol Problem with Random Attack Times," Operations Research, INFORMS, vol. 61(3), pages 694-710, June.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:694-710
    DOI: 10.1287/opre.1120.1149
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1149
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vic Baston & Kensaku Kikuta, 2009. "Technical Note---An Ambush Game with a Fat Infiltrator," Operations Research, INFORMS, vol. 57(2), pages 514-519, April.
    2. K. D. Glazebrook & C. Kirkbride & J. Ouenniche, 2009. "Index Policies for the Admission Control and Routing of Impatient Customers to Heterogeneous Service Stations," Operations Research, INFORMS, vol. 57(4), pages 975-989, August.
    3. K. D. Glazebrook & C. Kirkbride & H. M. Mitchell & D. P. Gaver & P. A. Jacobs, 2007. "Index Policies for Shooting Problems," Operations Research, INFORMS, vol. 55(4), pages 769-781, August.
    4. Lyn C. Thomas & Alan R. Washburn, 1991. "Dynamic Search Games," Operations Research, INFORMS, vol. 39(3), pages 415-422, June.
    5. Steve Alpern & Shmuel Gal, 2002. "Searching for an Agent Who May OR May Not Want to be Found," Operations Research, INFORMS, vol. 50(2), pages 311-323, April.
    6. Zoroa, N. & Zoroa, P. & Fernández-Sáez, M.J., 2009. "Weighted search games," European Journal of Operational Research, Elsevier, vol. 195(2), pages 394-411, June.
    7. Jan M. Chaiken & Peter Dormont, 1978. "A Patrol Car Allocation Model: Capabilities and Algorithms," Management Science, INFORMS, vol. 24(12), pages 1291-1300, August.
    8. Bernard W. Taylor, III & Laurence J. Moore & Edward R. Clayton & K. Roscoe Davis & Terry R. Rakes, 1985. "An Integer Nonlinear Goal Programming Model for the Deployment of State Highway Patrol Units," Management Science, INFORMS, vol. 31(11), pages 1335-1347, November.
    9. T. W. Archibald & D. P. Black & K. D. Glazebrook, 2009. "Indexability and Index Heuristics for a Simple Class of Inventory Routing Problems," Operations Research, INFORMS, vol. 57(2), pages 314-326, April.
    10. Vic Baston & Kensaku Kikuta, 2004. "An Ambush Game with an Unknown Number of Infiltrators," Operations Research, INFORMS, vol. 52(4), pages 597-605, August.
    11. John M. Auger, 1991. "An infiltration game on k arcs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 511-529, August.
    12. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    13. Kenneth Chelst, 1978. "An Algorithm for Deploying a Crime Directed (Tactical) Patrol Force," Management Science, INFORMS, vol. 24(12), pages 1314-1327, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bui, Thuy & Lidbetter, Thomas, 2023. "Optimal patrolling strategies for trees and complete networks," European Journal of Operational Research, Elsevier, vol. 311(2), pages 769-776.
    2. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    3. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    4. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    5. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    6. Alpern, Steve & Lidbetter, Thomas & Papadaki, Katerina, 2019. "Optimizing periodic patrols against short attacks on the line and other networks," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1065-1073.
    7. Steve Alpern & Thomas Lidbetter, 2019. "Approximate solutions for expanding search games on general networks," Annals of Operations Research, Springer, vol. 275(2), pages 259-279, April.
    8. Darlington, Matthew & Glazebrook, Kevin D. & Leslie, David S. & Shone, Rob & Szechtman, Roberto, 2023. "A stochastic game framework for patrolling a border," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1146-1158.
    9. Katerina Papadaki & Steve Alpern & Thomas Lidbetter & Alec Morton, 2016. "Patrolling a Border," Operations Research, INFORMS, vol. 64(6), pages 1256-1269, December.
    10. Kyle Y. Lin & Michael P. Atkinson & Kevin D. Glazebrook, 2014. "Optimal patrol to uncover threats in time when detection is imperfect," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(8), pages 557-576, December.
    11. Alpern, Steve & Fokkink, Robbert & Simanjuntak, Martin, 2016. "Optimal search and ambush for a hider who can escape the search region," European Journal of Operational Research, Elsevier, vol. 251(3), pages 707-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Y. Lin & Michael P. Atkinson & Kevin D. Glazebrook, 2014. "Optimal patrol to uncover threats in time when detection is imperfect," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(8), pages 557-576, December.
    2. Alpern, Steve & Fokkink, Robbert & Simanjuntak, Martin, 2016. "Optimal search and ambush for a hider who can escape the search region," European Journal of Operational Research, Elsevier, vol. 251(3), pages 707-714.
    3. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    4. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    5. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    6. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    7. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    8. Vivek S. Borkar & Sarath Pattathil, 2022. "Whittle indexability in egalitarian processor sharing systems," Annals of Operations Research, Springer, vol. 317(2), pages 417-437, October.
    9. Nicolas Gast & Bruno Gaujal & Kimang Khun, 2023. "Testing indexability and computing Whittle and Gittins index in subcubic time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 391-436, June.
    10. Steve Alpern & Alec Morton & Katerina Papadaki, 2011. "Patrolling Games," Operations Research, INFORMS, vol. 59(5), pages 1246-1257, October.
    11. Rob Shone & Vincent A. Knight & Paul R. Harper, 2020. "A conservative index heuristic for routing problems with multiple heterogeneous service facilities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 511-543, December.
    12. Katerina Papadaki & Steve Alpern & Thomas Lidbetter & Alec Morton, 2016. "Patrolling a Border," Operations Research, INFORMS, vol. 64(6), pages 1256-1269, December.
    13. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    14. Lei, Chao & Zhang, Qian & Ouyang, Yanfeng, 2017. "Planning of parking enforcement patrol considering drivers’ parking payment behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 375-392.
    15. Oléron Evans, Thomas P. & Bishop, Steven R., 2013. "Static search games played over graphs and general metric spaces," European Journal of Operational Research, Elsevier, vol. 231(3), pages 667-689.
    16. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2018. "Urban rail patrolling: a game theoretic approach," Journal of Transportation Security, Springer, vol. 11(1), pages 23-40, June.
    17. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    18. Baykal-Gürsoy, Melike & Duan, Zhe & Poor, H. Vincent & Garnaev, Andrey, 2014. "Infrastructure security games," European Journal of Operational Research, Elsevier, vol. 239(2), pages 469-478.
    19. Alpern, Steve & Lidbetter, Thomas & Papadaki, Katerina, 2019. "Optimizing periodic patrols against short attacks on the line and other networks," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1065-1073.
    20. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2009. "Protocols with No Acknowledgment," Operations Research, INFORMS, vol. 57(4), pages 905-915, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:694-710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.