IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i3p707-714.html
   My bibliography  Save this article

Optimal search and ambush for a hider who can escape the search region

Author

Listed:
  • Alpern, Steve
  • Fokkink, Robbert
  • Simanjuntak, Martin

Abstract

Search games for a mobile or immobile hider traditionally have the hider permanently confined to a compact ‘search region’ making eventual capture inevitable. Hence the payoff can be taken as time until capture. However in many real life search problems it is possible for the hider to escape an area in which he was known to be located (e.g. Bin Laden from Tora Bora) or for a prey animal to escape a predator’s hunting territory. We model and solve such continuous time problems with escape where we take the probability of capture to be the searcher’s payoff.

Suggested Citation

  • Alpern, Steve & Fokkink, Robbert & Simanjuntak, Martin, 2016. "Optimal search and ambush for a hider who can escape the search region," European Journal of Operational Research, Elsevier, vol. 251(3), pages 707-714.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:707-714
    DOI: 10.1016/j.ejor.2015.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715011418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. J. Baston & F. A. Bostock, 1987. "A continuous game of ambush," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 645-654, October.
    2. Kyle Y. Lin & Michael P. Atkinson & Timothy H. Chung & Kevin D. Glazebrook, 2013. "A Graph Patrol Problem with Random Attack Times," Operations Research, INFORMS, vol. 61(3), pages 694-710, June.
    3. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    4. Steve Alpern & Thomas Lidbetter, 2015. "Optimal Trade-Off Between Speed and Acuity When Searching for a Small Object," Operations Research, INFORMS, vol. 63(1), pages 122-133, February.
    5. Alpern, Steven & Lidbetter, Thomas, 2015. "Optimal trade-off between speed and acuity when searching for a small object," LSE Research Online Documents on Economics 61504, London School of Economics and Political Science, LSE Library.
    6. Oléron Evans, Thomas P. & Bishop, Steven R., 2013. "Static search games played over graphs and general metric spaces," European Journal of Operational Research, Elsevier, vol. 231(3), pages 667-689.
    7. Zoroa, Noemi & Zoroa, Procopio & Jose Fernandez-Saez, M., 1999. "A generalization of Ruckle's results for an ambush game," European Journal of Operational Research, Elsevier, vol. 119(2), pages 353-364, December.
    8. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2011. "A foraging problem: Sit-and-wait versus active predation," European Journal of Operational Research, Elsevier, vol. 208(2), pages 131-141, January.
    9. Zoroa, N. & Zoroa, P. & Fernández-Sáez, M.J., 2009. "Weighted search games," European Journal of Operational Research, Elsevier, vol. 195(2), pages 394-411, June.
    10. Hohzaki, Ryusuke & Iida, Koji, 2001. "Optimal ambushing search for a moving target," European Journal of Operational Research, Elsevier, vol. 133(1), pages 120-129, August.
    11. Vic Baston & Kensaku Kikuta, 2004. "An Ambush Game with an Unknown Number of Infiltrators," Operations Research, INFORMS, vol. 52(4), pages 597-605, August.
    12. R Hohzaki & R Masuda, 2012. "A smuggling game with asymmetrical information of players," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(10), pages 1434-1446, October.
    13. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    2. Alpern, Steve & Lidbetter, Thomas & Papadaki, Katerina, 2019. "Optimizing periodic patrols against short attacks on the line and other networks," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1065-1073.
    3. Steve Alpern & Thomas Lidbetter, 2019. "Approximate solutions for expanding search games on general networks," Annals of Operations Research, Springer, vol. 275(2), pages 259-279, April.
    4. Yolmeh, Abdolmajid & Baykal-Gürsoy, Melike, 2021. "Weighted network search games with multiple hidden objects and multiple search teams," European Journal of Operational Research, Elsevier, vol. 289(1), pages 338-349.
    5. Katerina Papadaki & Steve Alpern & Thomas Lidbetter & Alec Morton, 2016. "Patrolling a Border," Operations Research, INFORMS, vol. 64(6), pages 1256-1269, December.
    6. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    7. Lidbetter, Thomas, 2017. "On the approximation ratio of the Random Chinese Postman Tour for network search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 782-788.
    8. Kyle Y. Lin & Michael P. Atkinson & Timothy H. Chung & Kevin D. Glazebrook, 2013. "A Graph Patrol Problem with Random Attack Times," Operations Research, INFORMS, vol. 61(3), pages 694-710, June.
    9. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    10. Lidbetter, Thomas, 2020. "Search and rescue in the face of uncertain threats," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1153-1160.
    11. Jake Clarkson & Kevin D. Glazebrook & Kyle Y. Lin, 2020. "Fast or Slow: Search in Discrete Locations with Two Search Modes," Operations Research, INFORMS, vol. 68(2), pages 552-571, March.
    12. Noemí Zoroa & Procopio Zoroa & José Fernández‐Sáez, 2001. "New results on a Ruckle problem in discrete games of ambush," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(1), pages 98-106, February.
    13. José Correa & Tobias Harks & Vincent J. C. Kreuzen & Jannik Matuschke, 2017. "Fare Evasion in Transit Networks," Operations Research, INFORMS, vol. 65(1), pages 165-183, February.
    14. Bui, Thuy & Lidbetter, Thomas, 2023. "Optimal patrolling strategies for trees and complete networks," European Journal of Operational Research, Elsevier, vol. 311(2), pages 769-776.
    15. Vic Baston & Kensaku Kikuta, 2009. "Technical Note---An Ambush Game with a Fat Infiltrator," Operations Research, INFORMS, vol. 57(2), pages 514-519, April.
    16. Vic Baston & Kensaku Kikuta, 2004. "An Ambush Game with an Unknown Number of Infiltrators," Operations Research, INFORMS, vol. 52(4), pages 597-605, August.
    17. I.D. Woodward, 2003. "Discretization of the continuous ambush game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(5), pages 515-529, August.
    18. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    19. Baston, Vic & Kikuta, Kensaku, 2019. "A search problem on a bipartite network," European Journal of Operational Research, Elsevier, vol. 277(1), pages 227-237.
    20. Oléron Evans, Thomas P. & Bishop, Steven R., 2013. "Static search games played over graphs and general metric spaces," European Journal of Operational Research, Elsevier, vol. 231(3), pages 667-689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:707-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.