IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i6p1681-1696.html
   My bibliography  Save this article

Fast Algorithms for Specially Structured Minimum Cost Flow Problems with Applications

Author

Listed:
  • Balachandran Vaidyanathan

    (Operations Research, FedEx Express, Memphis, Tennessee 38125)

  • Ravindra K. Ahuja

    (Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611)

Abstract

The objective of the classical minimum cost flow problem is to send units of a good that reside at one or more points in a network (sources or supply nodes) with arc capacities to one or more other points in the network (sinks or demand nodes), incurring minimum cost. We develop fast algorithms for previously unstudied specially structured minimum cost flow problems that have applications in many areas, such as locomotive and airline scheduling, repositioning of empty rail freight cars, highway and river transportation, congestion pricing, shop loading, and production planning. First, we consider the case where the n 1 supply and n 2 demand nodes lie on a circle (or line) ( n = n 1 + n 2 ) and flow is allowed only in one direction; our algorithm solves this problem in O ( n ) time. Next, we consider a constrained version of this problem and show that it can be solved in O ( n log n 2 ) time. Finally, we consider the version where the nodes lie on a circle (or line), flow is allowed in both directions, and the costs of flow between two nodes in the clockwise and the counterclockwise direction are different; our algorithm solves this problem in O ( n log n ) time. Our algorithms are based on the successive shortest-path algorithm for the minimum cost flow problem. We exploit the special structure of the problem and use advanced data structures, when required, to achieve short run times.

Suggested Citation

  • Balachandran Vaidyanathan & Ravindra K. Ahuja, 2010. "Fast Algorithms for Specially Structured Minimum Cost Flow Problems with Applications," Operations Research, INFORMS, vol. 58(6), pages 1681-1696, December.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:6:p:1681-1696
    DOI: 10.1287/opre.1100.0846
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0846
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Edwin Romeijn & Dolores Romero Morales, 2003. "An asymptotically optimal greedy heuristic for the multiperiod single‐sourcing problem: The cyclic case," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(5), pages 412-437, August.
    2. Ravindra K. Ahuja & Dorit S. Hochbaum, 2008. "TECHNICAL NOTE---Solving Linear Cost Dynamic Lot-Sizing Problems in O ( n log n ) Time," Operations Research, INFORMS, vol. 56(1), pages 255-261, February.
    3. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    4. Morton Klein, 1967. "A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems," Management Science, INFORMS, vol. 14(3), pages 205-220, November.
    5. Ravindra K. Ahuja & Jian Liu & James B. Orlin & Dushyant Sharma & Larry A. Shughart, 2005. "Solving Real-Life Locomotive-Scheduling Problems," Transportation Science, INFORMS, vol. 39(4), pages 503-517, November.
    6. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    7. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    8. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    2. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    3. Lai, Minghui & Cai, Xiaoqiang & Li, Xiang, 2017. "Mechanism design for collaborative production-distribution planning with shipment consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 137-159.
    4. Shuvomoy Das Gupta & Lacra Pavel, 2019. "On seeking efficient Pareto optimal points in multi-player minimum cost flow problems with application to transportation systems," Journal of Global Optimization, Springer, vol. 74(3), pages 523-548, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    2. Alper Atamtürk & Simge Küçükyavuz, 2005. "Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation," Operations Research, INFORMS, vol. 53(4), pages 711-730, August.
    3. Farhat, Mlouka & Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie, 2019. "Lot sizing problem with batch ordering under periodic buyback contract and lost sales," International Journal of Production Economics, Elsevier, vol. 208(C), pages 500-511.
    4. Siao-Leu Phouratsamay & Safia Kedad-Sidhoum & Fanny Pascual, 2021. "Coordination of a two-level supply chain with contracts," 4OR, Springer, vol. 19(2), pages 235-264, June.
    5. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    6. van den Heuvel, Wilco & Gutiérrez, José Miguel & Hwang, Hark-Chin, 2011. "Note on "An efficient approach for solving the lot-sizing problem with time-varying storage capacities"," European Journal of Operational Research, Elsevier, vol. 213(2), pages 455-457, September.
    7. Zhili Zhou & Yongpei Guan, 2013. "Two-stage stochastic lot-sizing problem under cost uncertainty," Annals of Operations Research, Springer, vol. 209(1), pages 207-230, October.
    8. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    9. Hark‐Chin Hwang & Wilco van den Heuvel, 2012. "Improved algorithms for a lot‐sizing problem with inventory bounds and backlogging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 244-253, April.
    10. Martel, Alain & Gascon, Andre, 1998. "Dynamic lot-sizing with price changes and price-dependent holding costs," European Journal of Operational Research, Elsevier, vol. 111(1), pages 114-128, November.
    11. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    12. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    13. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    14. Yongpei Guan, 2011. "Stochastic lot-sizing with backlogging: computational complexity analysis," Journal of Global Optimization, Springer, vol. 49(4), pages 651-678, April.
    15. van den Heuvel, Wilco & Wagelmans, Albert P.M., 2006. "A polynomial time algorithm for a deterministic joint pricing and inventory model," European Journal of Operational Research, Elsevier, vol. 170(2), pages 463-480, April.
    16. Romeijn, H.E. & van den Heuvel, W.J. & Geunes, J., 2012. "Mitigating the Cost of Anarchy in Supply Chain Systems," Econometric Institute Research Papers EI 2012-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Heuvel, Wilco van den & Borm, Peter & Hamers, Herbert, 2007. "Economic lot-sizing games," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1117-1130, January.
    18. Chung-Yee Lee & Sila Çetinkaya & Wikrom Jaruphongsa, 2003. "A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse," Operations Research, INFORMS, vol. 51(5), pages 735-747, October.
    19. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    20. Hark-Chin Hwang & Hyun-Soo Ahn & Philip Kaminsky, 2013. "Basis Paths and a Polynomial Algorithm for the Multistage Production-Capacitated Lot-Sizing Problem," Operations Research, INFORMS, vol. 61(2), pages 469-482, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:6:p:1681-1696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.