IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i6p1384-1393.html
   My bibliography  Save this article

A Decomposition Approach for a Class of Capacitated Serial Systems

Author

Listed:
  • Ganesh Janakiraman

    (IOMS-OM Group, Stern School of Business, New York University, New York, New York 10012)

  • John A. Muckstadt

    (School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853)

Abstract

We study a class of two-echelon serial systems with identical ordering/production capacities or limits for both echelons. Demands are assumed to be integer valued. For the case where the lead time to the upstream echelon is one period, the optimality of state-dependent modified echelon base-stock policies is proved using a decomposition approach. For the case where the upstream lead time is two periods, we introduce a new class of policies called “two-tier base-stock policies,” and prove their optimality. Some insight about the inventory control problem in N echelon serial systems with identical capacities at all stages and arbitrary lead times everywhere is also provided. We argue that a generalization of two-tier base-stock policies, which we call “multitier base-stock policies,” are optimal for these systems; we also provide a bound on the number of parameters required to specify the optimal policy.

Suggested Citation

  • Ganesh Janakiraman & John A. Muckstadt, 2009. "A Decomposition Approach for a Class of Capacitated Serial Systems," Operations Research, INFORMS, vol. 57(6), pages 1384-1393, December.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:6:p:1384-1393
    DOI: 10.1287/opre.1080.0680
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0680
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1080.0680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sven Axsäter, 1993. "Exact and Approximate Evaluation of Batch-Ordering Policies for Two-Level Inventory Systems," Operations Research, INFORMS, vol. 41(4), pages 777-785, August.
    2. Robert S. Kaplan, 1970. "A Dynamic Inventory Model with Stochastic Lead Times," Management Science, INFORMS, vol. 16(7), pages 491-507, March.
    3. Steven Nahmias, 1979. "Simple Approximations for a Variety of Dynamic Leadtime Lost-Sales Inventory Models," Operations Research, INFORMS, vol. 27(5), pages 904-924, October.
    4. Ganesh Janakiraman & John A. Muckstadt, 2004. "Inventory Control in Directed Networks: A Note on Linear Costs," Operations Research, INFORMS, vol. 52(3), pages 491-495, June.
    5. Sven Axsäter, 1990. "Simple Solution Procedures for a Class of Two-Echelon Inventory Problems," Operations Research, INFORMS, vol. 38(1), pages 64-69, February.
    6. Alp Muharremoglu & John N. Tsitsiklis, 2008. "A Single-Unit Decomposition Approach to Multiechelon Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1089-1103, October.
    7. Rodney P. Parker & Roman Kapuscinski, 2004. "Optimal Policies for a Capacitated Two-Echelon Inventory System," Operations Research, INFORMS, vol. 52(5), pages 739-755, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Qi Feng & Zhongjie Ma & Zhaofang Mao & J. George Shanthikumar, 2021. "Multi‐Stage Supply Chain with Production Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 921-940, April.
    3. Süleyman Demirel & Izak Duenyas & Roman Kapuscinski, 2015. "Production and Inventory Control for a Make-to-Stock/Calibrate-to-Order System with Dedicated and Shared Resources," Operations Research, INFORMS, vol. 63(4), pages 823-839, August.
    4. Woonghee Tim Huh & Ganesh Janakiraman, 2010. "Base‐stock policies in capacitated assembly systems: Convexity properties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(2), pages 109-118, March.
    5. Peter Berling & Danja R. Sonntag, 2022. "Inventory control in production–inventory systems with random yield and rework: The unit‐tracking approach," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2628-2645, June.
    6. Alexandar Angelus, 2011. "A Multiechelon Inventory Problem with Secondary Market Sales," Management Science, INFORMS, vol. 57(12), pages 2145-2162, December.
    7. Stephen C. Graves & Tor Schoenmeyr, 2016. "Strategic Safety-Stock Placement in Supply Chains with Capacity Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 445-460, July.
    8. Peter Berling & Victor Martínez‐de‐Albéniz, 2016. "A characterization of optimal base‐stock levels for a multistage serial supply chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(1), pages 32-46, February.
    9. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2016. "Capacitated Multiechelon Inventory Systems: Policies and Bounds," Manufacturing & Service Operations Management, INFORMS, vol. 18(4), pages 570-584, October.
    10. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    11. Manafzadeh Dizbin, Nima & Tan, Barış, 2020. "Optimal control of production-inventory systems with correlated demand inter-arrival and processing times," International Journal of Production Economics, Elsevier, vol. 228(C).
    12. Qingkai Ji & Lijun Sun & Xiangpei Hu & Jing Hou, 2016. "Optimal policies of a two-echelon serial inventory system with general limited capacities," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6142-6155, October.
    13. Peter Berling & Victor Martínez-de-Albéniz, 2016. "Dynamic Speed Optimization in Supply Chains with Stochastic Demand," Transportation Science, INFORMS, vol. 50(3), pages 1114-1127, August.
    14. Awi Federgruen & C. Daniel Guetta & Garud Iyengar, 2018. "Two‐echelon distribution systems with random demands and storage constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 594-618, December.
    15. Woonghee Tim Huh & Ganesh Janakiraman, 2010. "On the Optimal Policy Structure in Serial Inventory Systems with Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 486-491, April.
    16. Victor Martínez-de-Albéniz & Alejandro Lago, 2010. "Myopic Inventory Policies Using Individual Customer Arrival Information," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 663-672, May.
    17. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2010. "Technical Note ---Capacitated Serial Inventory Systems: Sample Path and Stability Properties Under Base-Stock Policies," Operations Research, INFORMS, vol. 58(4-part-1), pages 1017-1022, August.
    18. Rodney P. Parker & Roman Kapuściński, 2011. "Managing a Noncooperative Supply Chain with Limited Capacity," Operations Research, INFORMS, vol. 59(4), pages 866-881, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hekimoğlu, Mustafa & van der Laan, Ervin & Dekker, Rommert, 2018. "Markov-modulated analysis of a spare parts system with random lead times and disruption risks," European Journal of Operational Research, Elsevier, vol. 269(3), pages 909-922.
    2. Ganesh Janakiraman & Robin O. Roundy, 2004. "Lost-Sales Problems with Stochastic Lead Times: Convexity Results for Base-Stock Policies," Operations Research, INFORMS, vol. 52(5), pages 795-803, October.
    3. Hossein Abouee-Mehrizi & Opher Baron & Oded Berman, 2014. "Exact Analysis of Capacitated Two-Echelon Inventory Systems with Priorities," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 561-577, October.
    4. Alp Muharremoglu & Nan Yang, 2010. "Inventory Management with an Exogenous Supply Process," Operations Research, INFORMS, vol. 58(1), pages 111-129, February.
    5. Iida, Tetsuo, 2015. "Benefits of leadtime information and of its combination with demand forecast information," International Journal of Production Economics, Elsevier, vol. 163(C), pages 146-156.
    6. Alp Muharremoglu & John N. Tsitsiklis, 2008. "A Single-Unit Decomposition Approach to Multiechelon Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1089-1103, October.
    7. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    8. Paul Zipkin, 2008. "On the Structure of Lost-Sales Inventory Models," Operations Research, INFORMS, vol. 56(4), pages 937-944, August.
    9. Chew, E. P. & Johnson, L. A., 1996. "Service level approximations for multiechelon inventory systems," European Journal of Operational Research, Elsevier, vol. 91(3), pages 440-455, June.
    10. Paul Zipkin, 2008. "Old and New Methods for Lost-Sales Inventory Systems," Operations Research, INFORMS, vol. 56(5), pages 1256-1263, October.
    11. Victor Martínez-de-Albéniz & Alejandro Lago, 2010. "Myopic Inventory Policies Using Individual Customer Arrival Information," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 663-672, May.
    12. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    13. Hossein Abouee‐Mehrizi & Oded Berman & Hassan Shavandi & Ata G. Zare, 2011. "An exact analysis of a joint production‐inventory problem in two‐echelon inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 713-730, December.
    14. Jing-Sheng Song & Candace A. Yano & Panupol Lerssrisuriya, 2000. "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 2(3), pages 287-296, July.
    15. Apurva Jain & Kamran Moinzadeh, 2005. "A Supply Chain Model with Reverse Information Exchange," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 360-378, November.
    16. Retsef Levi & Ganesh Janakiraman & Mahesh Nagarajan, 2008. "A 2-Approximation Algorithm for Stochastic Inventory Control Models with Lost Sales," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 351-374, May.
    17. David G. Lawson & Evan L. Porteus, 2000. "Multistage Inventory Management with Expediting," Operations Research, INFORMS, vol. 48(6), pages 878-893, December.
    18. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    19. Martinez de Albeniz, Victor & Lago, Alejandro, 2007. "Myopic inventory policies using individual customer arrival information," IESE Research Papers D/719, IESE Business School.
    20. Lawrence W. Robinson & James R. Bradley & L. Joseph Thomas, 2001. "Consequences of Order Crossover Under Order-Up-To Inventory Policies," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 175-188, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:6:p:1384-1393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.